Functions that are eventually constant along a filter #
In this file we define a predicate Filter.EventuallyConst f l
saying that a function f : α → β
is eventually equal to a constant along a filter l
. We also prove some basic properties of these
functions.
Implementation notes #
A naive definition of Filter.EventuallyConst f l
is ∃ y, ∀ᶠ x in l, f x = y
.
However, this proposition is false for empty α
, β
.
Instead, we say that Filter.map f l
is supported on a subsingleton.
This allows us to drop [Nonempty _]
assumptions here and there.
The proposition that a function is eventually constant along a filter on the domain.
Equations
- Filter.EventuallyConst f l = (Filter.map f l).Subsingleton
Instances For
theorem
Filter.eventuallyConst_iff_tendsto
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f : α → β}
[Nonempty β]
:
Filter.EventuallyConst f l ↔ ∃ (x : β), Filter.Tendsto f l (pure x)
theorem
Filter.EventuallyConst.exists_tendsto
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f : α → β}
[Nonempty β]
:
Filter.EventuallyConst f l → ∃ (x : β), Filter.Tendsto f l (pure x)
Alias of the forward direction of Filter.eventuallyConst_iff_tendsto
.
theorem
Filter.EventuallyConst.of_tendsto
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f : α → β}
{x : β}
(h : Filter.Tendsto f l (pure x))
:
theorem
Filter.eventuallyConst_iff_exists_eventuallyEq
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f : α → β}
[Nonempty β]
:
Filter.EventuallyConst f l ↔ ∃ (c : β), f =ᶠ[l] fun (x : α) => c
theorem
Filter.EventuallyConst.eventuallyEq_const
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f : α → β}
[Nonempty β]
:
Filter.EventuallyConst f l → ∃ (c : β), f =ᶠ[l] fun (x : α) => c
Alias of the forward direction of Filter.eventuallyConst_iff_exists_eventuallyEq
.
theorem
Filter.eventuallyConst_pred
{α : Type u_1}
{l : Filter α}
{p : α → Prop}
:
Filter.EventuallyConst p l ↔ (∀ᶠ (x : α) in l, p x) ∨ ∀ᶠ (x : α) in l, ¬p x
theorem
Filter.eventuallyConst_set
{α : Type u_1}
{l : Filter α}
{s : Set α}
:
Filter.EventuallyConst s l ↔ (∀ᶠ (x : α) in l, x ∈ s) ∨ ∀ᶠ (x : α) in l, x ∉ s
theorem
Filter.eventuallyConst_preimage
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{s : Set β}
{f : α → β}
:
Filter.EventuallyConst (f ⁻¹' s) l ↔ Filter.EventuallyConst s (Filter.map f l)
@[simp]
theorem
Filter.eventuallyConst_id
{α : Type u_1}
{l : Filter α}
:
Filter.EventuallyConst id l ↔ l.Subsingleton
@[simp]
@[simp]
theorem
Filter.EventuallyConst.const
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
(c : β)
:
Filter.EventuallyConst (fun (x : α) => c) l
theorem
Filter.EventuallyConst.congr
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f g : α → β}
(h : Filter.EventuallyConst f l)
(hg : f =ᶠ[l] g)
:
theorem
Filter.EventuallyConst.of_subsingleton_right
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f : α → β}
[Subsingleton β]
:
theorem
Filter.EventuallyConst.anti
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f : α → β}
{l' : Filter α}
(h : Filter.EventuallyConst f l)
(hl' : l' ≤ l)
:
theorem
Filter.EventuallyConst.of_subsingleton_left
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f : α → β}
[Subsingleton α]
:
theorem
Filter.EventuallyConst.comp
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{l : Filter α}
{f : α → β}
(h : Filter.EventuallyConst f l)
(g : β → γ)
:
Filter.EventuallyConst (g ∘ f) l
theorem
Filter.EventuallyConst.inv
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f : α → β}
[Inv β]
(h : Filter.EventuallyConst f l)
:
theorem
Filter.EventuallyConst.neg
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f : α → β}
[Neg β]
(h : Filter.EventuallyConst f l)
:
Filter.EventuallyConst (-f) l
theorem
Filter.EventuallyConst.comp_tendsto
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{l : Filter α}
{f : α → β}
{lb : Filter β}
{g : β → γ}
(hg : Filter.EventuallyConst g lb)
(hf : Filter.Tendsto f l lb)
:
Filter.EventuallyConst (g ∘ f) l
theorem
Filter.EventuallyConst.apply
{α : Type u_1}
{l : Filter α}
{ι : Type u_5}
{p : ι → Type u_6}
{g : α → (x : ι) → p x}
(h : Filter.EventuallyConst g l)
(i : ι)
:
Filter.EventuallyConst (fun (x : α) => g x i) l
theorem
Filter.EventuallyConst.comp₂
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{l : Filter α}
{f : α → β}
{g : α → γ}
(hf : Filter.EventuallyConst f l)
(op : β → γ → δ)
(hg : Filter.EventuallyConst g l)
:
Filter.EventuallyConst (fun (x : α) => op (f x) (g x)) l
theorem
Filter.EventuallyConst.prod_mk
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{l : Filter α}
{f : α → β}
{g : α → γ}
(hf : Filter.EventuallyConst f l)
(hg : Filter.EventuallyConst g l)
:
Filter.EventuallyConst (fun (x : α) => (f x, g x)) l
theorem
Filter.EventuallyConst.mul
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f : α → β}
[Mul β]
{g : α → β}
(hf : Filter.EventuallyConst f l)
(hg : Filter.EventuallyConst g l)
:
Filter.EventuallyConst (f * g) l
theorem
Filter.EventuallyConst.add
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
{f : α → β}
[Add β]
{g : α → β}
(hf : Filter.EventuallyConst f l)
(hg : Filter.EventuallyConst g l)
:
Filter.EventuallyConst (f + g) l
theorem
Filter.EventuallyConst.of_mulIndicator_const
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[One β]
{s : Set α}
{c : β}
(h : Filter.EventuallyConst (s.mulIndicator fun (x : α) => c) l)
(hc : c ≠ 1)
:
theorem
Filter.EventuallyConst.of_indicator_const
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[Zero β]
{s : Set α}
{c : β}
(h : Filter.EventuallyConst (s.indicator fun (x : α) => c) l)
(hc : c ≠ 0)
:
theorem
Filter.EventuallyConst.mulIndicator_const
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[One β]
{s : Set α}
(h : Filter.EventuallyConst s l)
(c : β)
:
Filter.EventuallyConst (s.mulIndicator fun (x : α) => c) l
theorem
Filter.EventuallyConst.indicator_const
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[Zero β]
{s : Set α}
(h : Filter.EventuallyConst s l)
(c : β)
:
Filter.EventuallyConst (s.indicator fun (x : α) => c) l
theorem
Filter.EventuallyConst.mulIndicator_const_iff_of_ne
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[One β]
{s : Set α}
{c : β}
(hc : c ≠ 1)
:
Filter.EventuallyConst (s.mulIndicator fun (x : α) => c) l ↔ Filter.EventuallyConst s l
theorem
Filter.EventuallyConst.indicator_const_iff_of_ne
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[Zero β]
{s : Set α}
{c : β}
(hc : c ≠ 0)
:
Filter.EventuallyConst (s.indicator fun (x : α) => c) l ↔ Filter.EventuallyConst s l
@[simp]
theorem
Filter.EventuallyConst.mulIndicator_const_iff
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[One β]
{s : Set α}
{c : β}
:
Filter.EventuallyConst (s.mulIndicator fun (x : α) => c) l ↔ c = 1 ∨ Filter.EventuallyConst s l
@[simp]
theorem
Filter.EventuallyConst.indicator_const_iff
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[Zero β]
{s : Set α}
{c : β}
:
Filter.EventuallyConst (s.indicator fun (x : α) => c) l ↔ c = 0 ∨ Filter.EventuallyConst s l
theorem
Filter.eventuallyConst_atTop
{α : Type u_1}
{β : Type u_2}
{f : α → β}
[SemilatticeSup α]
[Nonempty α]
:
Filter.EventuallyConst f Filter.atTop ↔ ∃ (i : α), ∀ (j : α), i ≤ j → f j = f i
theorem
Filter.eventuallyConst_atTop_nat
{α : Type u_1}
{f : ℕ → α}
:
Filter.EventuallyConst f Filter.atTop ↔ ∃ (n : ℕ), ∀ (m : ℕ), n ≤ m → f (m + 1) = f m