Results filters related to finiteness. #
Lattice equations #
theorem
Pairwise.exists_mem_filter_of_disjoint
{α : Type u}
{ι : Type u_2}
[Finite ι]
{l : ι → Filter α}
(hd : Pairwise (Function.onFun Disjoint l))
:
@[reducible, inline]
The dual version does not hold! Filter α
is not a CompleteDistribLattice
.
Instances For
principal
equations #
@[simp]
theorem
Filter.iInf_principal_finset
{α : Type u}
{ι : Type w}
(s : Finset ι)
(f : ι → Set α)
:
⨅ i ∈ s, Filter.principal (f i) = Filter.principal (⋂ i ∈ s, f i)
theorem
Filter.iInf_principal
{α : Type u}
{ι : Sort w}
[Finite ι]
(f : ι → Set α)
:
⨅ (i : ι), Filter.principal (f i) = Filter.principal (⋂ (i : ι), f i)
@[simp]
theorem
Filter.iInf_principal'
{α : Type u}
{ι : Type w}
[Finite ι]
(f : ι → Set α)
:
⨅ (i : ι), Filter.principal (f i) = Filter.principal (⋂ (i : ι), f i)
A special case of iInf_principal
that is safe to mark simp
.
theorem
Filter.iInf_principal_finite
{α : Type u}
{ι : Type w}
{s : Set ι}
(hs : s.Finite)
(f : ι → Set α)
:
⨅ i ∈ s, Filter.principal (f i) = Filter.principal (⋂ i ∈ s, f i)
Eventually #
theorem
Set.Finite.eventually_all
{α : Type u}
{ι : Type u_2}
{I : Set ι}
(hI : I.Finite)
{l : Filter α}
{p : ι → α → Prop}
:
(∀ᶠ (x : α) in l, ∀ i ∈ I, p i x) ↔ ∀ i ∈ I, ∀ᶠ (x : α) in l, p i x
Alias of Filter.eventually_all_finite
.
theorem
Finset.eventually_all
{α : Type u}
{ι : Type u_2}
(I : Finset ι)
{l : Filter α}
{p : ι → α → Prop}
:
(∀ᶠ (x : α) in l, ∀ i ∈ I, p i x) ↔ ∀ i ∈ I, ∀ᶠ (x : α) in l, p i x
Alias of Filter.eventually_all_finset
.