Lattice structure on order homomorphisms #
This file defines the lattice structure on order homomorphisms, which are bundled monotone functions.
Main definitions #
OrderHom.CompleteLattice
: ifβ
is a complete lattice, so isα →o β
Tags #
monotone map, bundled morphism
Equations
- OrderHom.instMax = { max := fun (f g : α →o β) => { toFun := fun (a : α) => f a ⊔ g a, monotone' := ⋯ } }
@[simp]
theorem
OrderHom.coe_sup
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[SemilatticeSup β]
(f g : α →o β)
:
instance
OrderHom.instSemilatticeSup
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[SemilatticeSup β]
:
SemilatticeSup (α →o β)
Equations
Equations
- OrderHom.instMin = { min := fun (f g : α →o β) => { toFun := fun (a : α) => f a ⊓ g a, monotone' := ⋯ } }
@[simp]
theorem
OrderHom.coe_inf
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[SemilatticeInf β]
(f g : α →o β)
:
instance
OrderHom.instSemilatticeInf
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[SemilatticeInf β]
:
SemilatticeInf (α →o β)
Equations
- OrderHom.instSemilatticeInf = SemilatticeInf.mk (fun (x1 x2 : α →o β) => x1 ⊓ x2) ⋯ ⋯ ⋯
Equations
instance
OrderHom.instBotOfOrderBot
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
[OrderBot β]
:
Equations
- OrderHom.instBotOfOrderBot = { bot := (OrderHom.const α) ⊥ }
instance
OrderHom.instTopOrderHom
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
[OrderTop β]
:
Equations
- OrderHom.instTopOrderHom = { top := (OrderHom.const α) ⊤ }
Equations
- OrderHom.instInfSet = { sInf := fun (s : Set (α →o β)) => { toFun := fun (x : α) => ⨅ f ∈ s, f x, monotone' := ⋯ } }
@[simp]
theorem
OrderHom.sInf_apply
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[CompleteLattice β]
(s : Set (α →o β))
(x : α)
:
theorem
OrderHom.iInf_apply
{α : Type u_1}
{β : Type u_2}
[Preorder α]
{ι : Sort u_3}
[CompleteLattice β]
(f : ι → α →o β)
(x : α)
:
(⨅ (i : ι), f i) x = ⨅ (i : ι), (f i) x
@[simp]
theorem
OrderHom.coe_iInf
{α : Type u_1}
{β : Type u_2}
[Preorder α]
{ι : Sort u_3}
[CompleteLattice β]
(f : ι → α →o β)
:
⇑(⨅ (i : ι), f i) = ⨅ (i : ι), ⇑(f i)
Equations
- OrderHom.instSupSet = { sSup := fun (s : Set (α →o β)) => { toFun := fun (x : α) => ⨆ f ∈ s, f x, monotone' := ⋯ } }
@[simp]
theorem
OrderHom.sSup_apply
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[CompleteLattice β]
(s : Set (α →o β))
(x : α)
:
theorem
OrderHom.iSup_apply
{α : Type u_1}
{β : Type u_2}
[Preorder α]
{ι : Sort u_3}
[CompleteLattice β]
(f : ι → α →o β)
(x : α)
:
(⨆ (i : ι), f i) x = ⨆ (i : ι), (f i) x
@[simp]
theorem
OrderHom.coe_iSup
{α : Type u_1}
{β : Type u_2}
[Preorder α]
{ι : Sort u_3}
[CompleteLattice β]
(f : ι → α →o β)
:
⇑(⨆ (i : ι), f i) = ⨆ (i : ι), ⇑(f i)
instance
OrderHom.instCompleteLattice
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[CompleteLattice β]
:
CompleteLattice (α →o β)
Equations
- OrderHom.instCompleteLattice = CompleteLattice.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯