Additional lemmas about elements of a ring satisfying IsCoprime
#
and elements of a monoid satisfying IsRelPrime
These lemmas are in a separate file to the definition of IsCoprime
or IsRelPrime
as they require more imports.
Notably, this includes lemmas about Finset.prod
as this requires importing BigOperators, and
lemmas about Pow
since these are easiest to prove via Finset.prod
.
Alias of the forward direction of Nat.isCoprime_iff_coprime
.
Alias of the reverse direction of Nat.isCoprime_iff_coprime
.
theorem
ne_zero_or_ne_zero_of_nat_coprime
{A : Type u}
[CommRing A]
[Nontrivial A]
{a b : ℕ}
(h : a.Coprime b)
:
theorem
IsCoprime.prod_left
{R : Type u}
{I : Type v}
[CommSemiring R]
{x : R}
{s : I → R}
{t : Finset I}
:
theorem
IsCoprime.prod_right
{R : Type u}
{I : Type v}
[CommSemiring R]
{x : R}
{s : I → R}
{t : Finset I}
:
theorem
IsCoprime.prod_left_iff
{R : Type u}
{I : Type v}
[CommSemiring R]
{x : R}
{s : I → R}
{t : Finset I}
:
theorem
IsCoprime.prod_right_iff
{R : Type u}
{I : Type v}
[CommSemiring R]
{x : R}
{s : I → R}
{t : Finset I}
:
theorem
IsCoprime.of_prod_left
{R : Type u}
{I : Type v}
[CommSemiring R]
{x : R}
{s : I → R}
{t : Finset I}
(H1 : IsCoprime (∏ i ∈ t, s i) x)
(i : I)
(hit : i ∈ t)
:
IsCoprime (s i) x
theorem
IsCoprime.of_prod_right
{R : Type u}
{I : Type v}
[CommSemiring R]
{x : R}
{s : I → R}
{t : Finset I}
(H1 : IsCoprime x (∏ i ∈ t, s i))
(i : I)
(hit : i ∈ t)
:
IsCoprime x (s i)
theorem
Finset.prod_dvd_of_coprime
{R : Type u}
{I : Type v}
[CommSemiring R]
{z : R}
{s : I → R}
{t : Finset I}
:
(↑t).Pairwise (Function.onFun IsCoprime s) → (∀ i ∈ t, s i ∣ z) → ∏ x ∈ t, s x ∣ z
theorem
Fintype.prod_dvd_of_coprime
{R : Type u}
{I : Type v}
[CommSemiring R]
{z : R}
{s : I → R}
[Fintype I]
(Hs : Pairwise (Function.onFun IsCoprime s))
(Hs1 : ∀ (i : I), s i ∣ z)
:
∏ x : I, s x ∣ z
theorem
exists_sum_eq_one_iff_pairwise_coprime
{R : Type u}
{I : Type v}
[CommSemiring R]
{s : I → R}
{t : Finset I}
[DecidableEq I]
(h : t.Nonempty)
:
theorem
exists_sum_eq_one_iff_pairwise_coprime'
{R : Type u}
{I : Type v}
[CommSemiring R]
{s : I → R}
[Fintype I]
[Nonempty I]
[DecidableEq I]
:
theorem
pairwise_coprime_iff_coprime_prod
{R : Type u}
{I : Type v}
[CommSemiring R]
{s : I → R}
{t : Finset I}
[DecidableEq I]
:
theorem
IsRelPrime.prod_left
{α : Type u_2}
{I : Type u_1}
[CommMonoid α]
[DecompositionMonoid α]
{x : α}
{s : I → α}
{t : Finset I}
:
(∀ i ∈ t, IsRelPrime (s i) x) → IsRelPrime (∏ i ∈ t, s i) x
theorem
IsRelPrime.prod_right
{α : Type u_2}
{I : Type u_1}
[CommMonoid α]
[DecompositionMonoid α]
{x : α}
{s : I → α}
{t : Finset I}
:
(∀ i ∈ t, IsRelPrime x (s i)) → IsRelPrime x (∏ i ∈ t, s i)
theorem
IsRelPrime.prod_left_iff
{α : Type u_1}
{I : Type u_2}
[CommMonoid α]
[DecompositionMonoid α]
{x : α}
{s : I → α}
{t : Finset I}
:
IsRelPrime (∏ i ∈ t, s i) x ↔ ∀ i ∈ t, IsRelPrime (s i) x
theorem
IsRelPrime.prod_right_iff
{α : Type u_1}
{I : Type u_2}
[CommMonoid α]
[DecompositionMonoid α]
{x : α}
{s : I → α}
{t : Finset I}
:
IsRelPrime x (∏ i ∈ t, s i) ↔ ∀ i ∈ t, IsRelPrime x (s i)
theorem
IsRelPrime.of_prod_left
{α : Type u_1}
{I : Type u_2}
[CommMonoid α]
[DecompositionMonoid α]
{x : α}
{s : I → α}
{t : Finset I}
(H1 : IsRelPrime (∏ i ∈ t, s i) x)
(i : I)
(hit : i ∈ t)
:
IsRelPrime (s i) x
theorem
IsRelPrime.of_prod_right
{α : Type u_1}
{I : Type u_2}
[CommMonoid α]
[DecompositionMonoid α]
{x : α}
{s : I → α}
{t : Finset I}
(H1 : IsRelPrime x (∏ i ∈ t, s i))
(i : I)
(hit : i ∈ t)
:
IsRelPrime x (s i)
theorem
Finset.prod_dvd_of_isRelPrime
{α : Type u_2}
{I : Type u_1}
[CommMonoid α]
[DecompositionMonoid α]
{z : α}
{s : I → α}
{t : Finset I}
:
(↑t).Pairwise (Function.onFun IsRelPrime s) → (∀ i ∈ t, s i ∣ z) → ∏ x ∈ t, s x ∣ z
theorem
Fintype.prod_dvd_of_isRelPrime
{α : Type u_2}
{I : Type u_1}
[CommMonoid α]
[DecompositionMonoid α]
{z : α}
{s : I → α}
[Fintype I]
(Hs : Pairwise (Function.onFun IsRelPrime s))
(Hs1 : ∀ (i : I), s i ∣ z)
:
∏ x : I, s x ∣ z
theorem
pairwise_isRelPrime_iff_isRelPrime_prod
{α : Type u_2}
{I : Type u_1}
[CommMonoid α]
[DecompositionMonoid α]
{s : I → α}
{t : Finset I}
[DecidableEq I]
:
Pairwise (Function.onFun IsRelPrime fun (i : { x : I // x ∈ t }) => s ↑i) ↔ ∀ i ∈ t, IsRelPrime (s i) (∏ j ∈ t \ {i}, s j)
theorem
IsRelPrime.pow_left
{α : Type u_1}
[CommMonoid α]
[DecompositionMonoid α]
{x y : α}
{m : ℕ}
(H : IsRelPrime x y)
:
IsRelPrime (x ^ m) y
theorem
IsRelPrime.pow_right
{α : Type u_1}
[CommMonoid α]
[DecompositionMonoid α]
{x y : α}
{n : ℕ}
(H : IsRelPrime x y)
:
IsRelPrime x (y ^ n)
theorem
IsRelPrime.pow
{α : Type u_1}
[CommMonoid α]
[DecompositionMonoid α]
{x y : α}
{m n : ℕ}
(H : IsRelPrime x y)
:
IsRelPrime (x ^ m) (y ^ n)
theorem
IsRelPrime.pow_left_iff
{α : Type u_1}
[CommMonoid α]
[DecompositionMonoid α]
{x y : α}
{m : ℕ}
(hm : 0 < m)
:
IsRelPrime (x ^ m) y ↔ IsRelPrime x y
theorem
IsRelPrime.pow_right_iff
{α : Type u_1}
[CommMonoid α]
[DecompositionMonoid α]
{x y : α}
{m : ℕ}
(hm : 0 < m)
:
IsRelPrime x (y ^ m) ↔ IsRelPrime x y
theorem
IsRelPrime.pow_iff
{α : Type u_1}
[CommMonoid α]
[DecompositionMonoid α]
{x y : α}
{m n : ℕ}
(hm : 0 < m)
(hn : 0 < n)
:
IsRelPrime (x ^ m) (y ^ n) ↔ IsRelPrime x y