The complete lattice structure on two-sided ideals #
Equations
- TwoSidedIdeal.instSemilatticeSup R = SemilatticeSup.mk (fun (I J : TwoSidedIdeal R) => { ringCon := I.ringCon ⊔ J.ringCon }) ⋯ ⋯ ⋯
theorem
TwoSidedIdeal.sup_ringCon
(R : Type u_1)
[NonUnitalNonAssocRing R]
(I J : TwoSidedIdeal R)
:
theorem
TwoSidedIdeal.mem_sup_left
{R : Type u_1}
[NonUnitalNonAssocRing R]
{I J : TwoSidedIdeal R}
{x : R}
(h : x ∈ I)
:
theorem
TwoSidedIdeal.mem_sup_right
{R : Type u_1}
[NonUnitalNonAssocRing R]
{I J : TwoSidedIdeal R}
{x : R}
(h : x ∈ J)
:
theorem
TwoSidedIdeal.mem_sup
{R : Type u_1}
[NonUnitalNonAssocRing R]
{I J : TwoSidedIdeal R}
{x : R}
:
Equations
- TwoSidedIdeal.instSemilatticeInf R = SemilatticeInf.mk (fun (I J : TwoSidedIdeal R) => { ringCon := I.ringCon ⊓ J.ringCon }) ⋯ ⋯ ⋯
theorem
TwoSidedIdeal.inf_ringCon
(R : Type u_1)
[NonUnitalNonAssocRing R]
(I J : TwoSidedIdeal R)
:
theorem
TwoSidedIdeal.mem_inf
(R : Type u_1)
[NonUnitalNonAssocRing R]
{I J : TwoSidedIdeal R}
{x : R}
:
instance
TwoSidedIdeal.instSupSet
(R : Type u_1)
[NonUnitalNonAssocRing R]
:
SupSet (TwoSidedIdeal R)
Equations
- TwoSidedIdeal.instSupSet R = { sSup := fun (s : Set (TwoSidedIdeal R)) => { ringCon := sSup (TwoSidedIdeal.ringCon '' s) } }
theorem
TwoSidedIdeal.sSup_ringCon
(R : Type u_1)
[NonUnitalNonAssocRing R]
(S : Set (TwoSidedIdeal R))
:
(sSup S).ringCon = sSup (TwoSidedIdeal.ringCon '' S)
theorem
TwoSidedIdeal.iSup_ringCon
(R : Type u_1)
[NonUnitalNonAssocRing R]
{ι : Type u_2}
(I : ι → TwoSidedIdeal R)
:
(⨆ (i : ι), I i).ringCon = ⨆ (i : ι), (I i).ringCon
Equations
instance
TwoSidedIdeal.instInfSet
(R : Type u_1)
[NonUnitalNonAssocRing R]
:
InfSet (TwoSidedIdeal R)
Equations
- TwoSidedIdeal.instInfSet R = { sInf := fun (s : Set (TwoSidedIdeal R)) => { ringCon := sInf (TwoSidedIdeal.ringCon '' s) } }
theorem
TwoSidedIdeal.sInf_ringCon
(R : Type u_1)
[NonUnitalNonAssocRing R]
(S : Set (TwoSidedIdeal R))
:
(sInf S).ringCon = sInf (TwoSidedIdeal.ringCon '' S)
theorem
TwoSidedIdeal.iInf_ringCon
(R : Type u_1)
[NonUnitalNonAssocRing R]
{ι : Type u_2}
(I : ι → TwoSidedIdeal R)
:
(⨅ (i : ι), I i).ringCon = ⨅ (i : ι), (I i).ringCon
Equations
theorem
TwoSidedIdeal.mem_iInf
(R : Type u_1)
[NonUnitalNonAssocRing R]
{ι : Type u_2}
{I : ι → TwoSidedIdeal R}
{x : R}
:
theorem
TwoSidedIdeal.mem_sInf
(R : Type u_1)
[NonUnitalNonAssocRing R]
{S : Set (TwoSidedIdeal R)}
{x : R}
:
Equations
- TwoSidedIdeal.instTop R = { top := { ringCon := ⊤ } }
Equations
- TwoSidedIdeal.instBot R = { bot := { ringCon := ⊥ } }
@[simp]
Equations
- TwoSidedIdeal.instCompleteLattice R = CompleteLattice.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Alias of the reverse direction of TwoSidedIdeal.one_mem_iff
.
Alias of the forward direction of TwoSidedIdeal.one_mem_iff
.