Documentation
Mathlib
.
SetTheory
.
Cardinal
.
UnivLE
Search
return to top
source
Imports
Init
Mathlib.Logic.UnivLE
Mathlib.SetTheory.Ordinal.Basic
Imported by
univLE_iff_cardinal_le
univLE_iff_exists_embedding
Ordinal
.
univLE_of_injective
univLE_total
UnivLE and cardinals
#
source
theorem
univLE_iff_cardinal_le
:
UnivLE.{u, v}
↔
Cardinal.univ.{u, v + 1}
≤
Cardinal.univ.{v, u + 1}
source
theorem
univLE_iff_exists_embedding
:
UnivLE.{u, v}
↔
Nonempty
(
Ordinal.{u}
↪
Ordinal.{v}
)
source
theorem
Ordinal
.
univLE_of_injective
{f :
Ordinal.{u}
→
Ordinal.{v}
}
(h :
Function.Injective
f
)
:
UnivLE.{u, v}
source
theorem
univLE_total
:
UnivLE.{u, v}
∨
UnivLE.{v, u}
Together with transitivity, this shows UnivLE "IsTotalPreorder".