Documentation

Mathlib.SetTheory.Ordinal.FixedPoint

Fixed points of normal functions #

We prove various statements about the fixed points of normal ordinal functions. We state them in three forms: as statements about type-indexed families of normal functions, as statements about ordinal-indexed families of normal functions, and as statements about a single normal function. For the most part, the first case encompasses the others.

Moreover, we prove some lemmas about the fixed points of specific normal functions.

Main definitions and results #

Fixed points of type-indexed families of ordinals #

def Ordinal.nfpFamily {ι : Type u_1} (f : ιOrdinal.{u}Ordinal.{u}) (a : Ordinal.{u}) :

The next common fixed point, at least a, for a family of normal functions.

This is defined for any family of functions, as the supremum of all values reachable by applying finitely many functions in the family to a.

Ordinal.nfpFamily_fp shows this is a fixed point, Ordinal.le_nfpFamily shows it's at least a, and Ordinal.nfpFamily_le_fp shows this is the least ordinal with these properties.

Equations
theorem Ordinal.foldr_le_nfpFamily {ι : Type u_1} [Small.{u, u_1} ι] (f : ιOrdinal.{u}Ordinal.{u}) (a : Ordinal.{u}) (l : List ι) :
theorem Ordinal.le_nfpFamily {ι : Type u_1} [Small.{u, u_1} ι] (f : ιOrdinal.{u}Ordinal.{u}) (a : Ordinal.{u}) :
theorem Ordinal.lt_nfpFamily_iff {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] {a b : Ordinal.{u}} :
a < nfpFamily f b ∃ (l : List ι), a < List.foldr f b l
@[deprecated Ordinal.lt_nfpFamily_iff (since := "2025-02-16")]
theorem Ordinal.lt_nfpFamily {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] {a b : Ordinal.{u}} :
a < nfpFamily f b ∃ (l : List ι), a < List.foldr f b l

Alias of Ordinal.lt_nfpFamily_iff.

theorem Ordinal.nfpFamily_le_iff {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] {a b : Ordinal.{u}} :
nfpFamily f a b ∀ (l : List ι), List.foldr f a l b
theorem Ordinal.nfpFamily_le {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} {a b : Ordinal.{u}} :
(∀ (l : List ι), List.foldr f a l b)nfpFamily f a b
theorem Ordinal.nfpFamily_monotone {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] (hf : ∀ (i : ι), Monotone (f i)) :
theorem Ordinal.apply_lt_nfpFamily {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] (H : ∀ (i : ι), IsNormal (f i)) {a b : Ordinal.{u}} (hb : b < nfpFamily f a) (i : ι) :
f i b < nfpFamily f a
theorem Ordinal.apply_lt_nfpFamily_iff {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Nonempty ι] [Small.{u, u_1} ι] (H : ∀ (i : ι), IsNormal (f i)) {a b : Ordinal.{u}} :
(∀ (i : ι), f i b < nfpFamily f a) b < nfpFamily f a
theorem Ordinal.nfpFamily_le_apply {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Nonempty ι] [Small.{u, u_1} ι] (H : ∀ (i : ι), IsNormal (f i)) {a b : Ordinal.{u}} :
(∃ (i : ι), nfpFamily f a f i b) nfpFamily f a b
theorem Ordinal.nfpFamily_le_fp {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} (H : ∀ (i : ι), Monotone (f i)) {a b : Ordinal.{u}} (ab : a b) (h : ∀ (i : ι), f i b b) :
theorem Ordinal.nfpFamily_fp {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] {i : ι} (H : IsNormal (f i)) (a : Ordinal.{u}) :
f i (nfpFamily f a) = nfpFamily f a
theorem Ordinal.apply_le_nfpFamily {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] [ : Nonempty ι] (H : ∀ (i : ι), IsNormal (f i)) {a b : Ordinal.{u}} :
(∀ (i : ι), f i b nfpFamily f a) b nfpFamily f a
theorem Ordinal.nfpFamily_eq_self {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] {a : Ordinal.{u}} (h : ∀ (i : ι), f i a = a) :
nfpFamily f a = a
theorem Ordinal.not_bddAbove_fp_family {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] (H : ∀ (i : ι), IsNormal (f i)) :
¬BddAbove (⋂ (i : ι), Function.fixedPoints (f i))

A generalization of the fixed point lemma for normal functions: any family of normal functions has an unbounded set of common fixed points.

The derivative of a family of normal functions is the sequence of their common fixed points.

This is defined for all functions such that Ordinal.derivFamily_zero, Ordinal.derivFamily_succ, and Ordinal.derivFamily_limit are satisfied.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Ordinal.derivFamily_zero {ι : Type u_1} (f : ιOrdinal.{u_2}Ordinal.{u_2}) :
theorem Ordinal.derivFamily_limit {ι : Type u_1} (f : ιOrdinal.{u_2}Ordinal.{u_2}) {o : Ordinal.{u_2}} :
o.IsLimitderivFamily f o = ⨆ (b : (Set.Iio o)), derivFamily f b
theorem Ordinal.derivFamily_fp {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] {i : ι} (H : IsNormal (f i)) (o : Ordinal.{u}) :
f i (derivFamily f o) = derivFamily f o
theorem Ordinal.le_iff_derivFamily {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] (H : ∀ (i : ι), IsNormal (f i)) {a : Ordinal.{u}} :
(∀ (i : ι), f i a a) ∃ (o : Ordinal.{u}), derivFamily f o = a
theorem Ordinal.fp_iff_derivFamily {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] (H : ∀ (i : ι), IsNormal (f i)) {a : Ordinal.{u}} :
(∀ (i : ι), f i a = a) ∃ (o : Ordinal.{u}), derivFamily f o = a
theorem Ordinal.derivFamily_eq_enumOrd {ι : Type u_1} {f : ιOrdinal.{u}Ordinal.{u}} [Small.{u, u_1} ι] (H : ∀ (i : ι), IsNormal (f i)) :
derivFamily f = enumOrd (⋂ (i : ι), Function.fixedPoints (f i))

For a family of normal functions, Ordinal.derivFamily enumerates the common fixed points.

Fixed points of a single function #

The next fixed point function, the least fixed point of the normal function f, at least a.

This is defined as nfpFamily applied to a family consisting only of f.

Equations
theorem Ordinal.iSup_iterate_eq_nfp (f : Ordinal.{u}Ordinal.{u}) (a : Ordinal.{u}) :
⨆ (n : ), f^[n] a = nfp f a
theorem Ordinal.lt_nfp_iff {f : Ordinal.{u}Ordinal.{u}} {a b : Ordinal.{u}} :
a < nfp f b ∃ (n : ), a < f^[n] b
theorem Ordinal.nfp_le_iff {f : Ordinal.{u}Ordinal.{u}} {a b : Ordinal.{u}} :
nfp f a b ∀ (n : ), f^[n] a b
theorem Ordinal.nfp_le {f : Ordinal.{u}Ordinal.{u}} {a b : Ordinal.{u}} :
(∀ (n : ), f^[n] a b)nfp f a b
@[simp]
theorem Ordinal.iterate_lt_nfp {f : Ordinal.{u}Ordinal.{u}} (hf : StrictMono f) {a : Ordinal.{u}} (h : a < f a) (n : ) :
f^[n] a < nfp f a
theorem Ordinal.IsNormal.apply_lt_nfp {f : Ordinal.{u}Ordinal.{u}} (H : IsNormal f) {a b : Ordinal.{u}} :
f b < nfp f a b < nfp f a
theorem Ordinal.nfp_le_fp {f : Ordinal.{u}Ordinal.{u}} (H : Monotone f) {a b : Ordinal.{u}} (ab : a b) (h : f b b) :
nfp f a b
theorem Ordinal.IsNormal.nfp_fp {f : Ordinal.{u}Ordinal.{u}} (H : IsNormal f) (a : Ordinal.{u}) :
f (nfp f a) = nfp f a
theorem Ordinal.nfp_eq_self {f : Ordinal.{u}Ordinal.{u}} {a : Ordinal.{u}} (h : f a = a) :
nfp f a = a

The fixed point lemma for normal functions: any normal function has an unbounded set of fixed points.

The derivative of a normal function f is the sequence of fixed points of f.

This is defined as Ordinal.derivFamily applied to a trivial family consisting only of f.

Equations
theorem Ordinal.deriv_limit (f : Ordinal.{u_1}Ordinal.{u_1}) {o : Ordinal.{u_1}} :
o.IsLimitderiv f o = ⨆ (a : { a : Ordinal.{u_1} // a < o }), deriv f a
theorem Ordinal.IsNormal.fp_iff_deriv {f : Ordinal.{u}Ordinal.{u}} (H : IsNormal f) {a : Ordinal.{u}} :
f a = a ∃ (o : Ordinal.{u}), deriv f o = a

Ordinal.deriv enumerates the fixed points of a normal function.

@[simp]
@[simp]

Fixed points of addition #

@[simp]
theorem Ordinal.nfp_add_zero (a : Ordinal.{u_1}) :
nfp (fun (x : Ordinal.{u_1}) => a + x) 0 = a * omega0
theorem Ordinal.nfp_add_eq_mul_omega0 {a b : Ordinal.{u_1}} (hba : b a * omega0) :
nfp (fun (x : Ordinal.{u_1}) => a + x) b = a * omega0

Fixed points of multiplication #

@[simp]
theorem Ordinal.nfp_mul_one {a : Ordinal.{u_1}} (ha : 0 < a) :
nfp (fun (x : Ordinal.{u_1}) => a * x) 1 = a ^ omega0
@[simp]
theorem Ordinal.nfp_mul_zero (a : Ordinal.{u_1}) :
nfp (fun (x : Ordinal.{u_1}) => a * x) 0 = 0
theorem Ordinal.nfp_mul_eq_opow_omega0 {a b : Ordinal.{u_1}} (hb : 0 < b) (hba : b a ^ omega0) :
nfp (fun (x : Ordinal.{u_1}) => a * x) b = a ^ omega0
theorem Ordinal.nfp_mul_opow_omega0_add {a c : Ordinal.{u_1}} (b : Ordinal.{u_1}) (ha : 0 < a) (hc : 0 < c) (hca : c a ^ omega0) :
nfp (fun (x : Ordinal.{u_1}) => a * x) (a ^ omega0 * b + c) = a ^ omega0 * Order.succ b
theorem Ordinal.deriv_mul_eq_opow_omega0_mul {a : Ordinal.{u}} (ha : 0 < a) (b : Ordinal.{u}) :
deriv (fun (x : Ordinal.{u}) => a * x) b = a ^ omega0 * b