Infinite sum in the reals #
This file provides lemmas about Cauchy sequences in terms of infinite sums and infinite sums valued in the reals.
theorem
cauchySeq_of_dist_le_of_summable
{α : Type u_1}
[PseudoMetricSpace α]
{f : ℕ → α}
(d : ℕ → ℝ)
(hf : ∀ (n : ℕ), dist (f n) (f n.succ) ≤ d n)
(hd : Summable d)
:
If the distance between consecutive points of a sequence is estimated by a summable series, then the original sequence is a Cauchy sequence.
theorem
cauchySeq_of_summable_dist
{α : Type u_1}
[PseudoMetricSpace α]
{f : ℕ → α}
(h : Summable fun (n : ℕ) => dist (f n) (f n.succ))
:
theorem
dist_le_tsum_of_dist_le_of_tendsto
{α : Type u_1}
[PseudoMetricSpace α]
{f : ℕ → α}
(d : ℕ → ℝ)
(hf : ∀ (n : ℕ), dist (f n) (f n.succ) ≤ d n)
(hd : Summable d)
{a : α}
(ha : Filter.Tendsto f Filter.atTop (nhds a))
(n : ℕ)
:
theorem
dist_le_tsum_of_dist_le_of_tendsto₀
{α : Type u_1}
[PseudoMetricSpace α]
{f : ℕ → α}
{a : α}
(d : ℕ → ℝ)
(hf : ∀ (n : ℕ), dist (f n) (f n.succ) ≤ d n)
(hd : Summable d)
(ha : Filter.Tendsto f Filter.atTop (nhds a))
:
theorem
dist_le_tsum_dist_of_tendsto
{α : Type u_1}
[PseudoMetricSpace α]
{f : ℕ → α}
{a : α}
(h : Summable fun (n : ℕ) => dist (f n) (f n.succ))
(ha : Filter.Tendsto f Filter.atTop (nhds a))
(n : ℕ)
:
theorem
dist_le_tsum_dist_of_tendsto₀
{α : Type u_1}
[PseudoMetricSpace α]
{f : ℕ → α}
{a : α}
(h : Summable fun (n : ℕ) => dist (f n) (f n.succ))
(ha : Filter.Tendsto f Filter.atTop (nhds a))
:
theorem
not_summable_iff_tendsto_nat_atTop_of_nonneg
{f : ℕ → ℝ}
(hf : ∀ (n : ℕ), 0 ≤ f n)
:
¬Summable f ↔ Filter.Tendsto (fun (n : ℕ) => ∑ i ∈ Finset.range n, f i) Filter.atTop Filter.atTop
theorem
summable_iff_not_tendsto_nat_atTop_of_nonneg
{f : ℕ → ℝ}
(hf : ∀ (n : ℕ), 0 ≤ f n)
:
Summable f ↔ ¬Filter.Tendsto (fun (n : ℕ) => ∑ i ∈ Finset.range n, f i) Filter.atTop Filter.atTop
theorem
tsum_lt_tsum_of_nonneg
{i : ℕ}
{f g : ℕ → ℝ}
(h0 : ∀ (b : ℕ), 0 ≤ f b)
(h : ∀ (b : ℕ), f b ≤ g b)
(hi : f i < g i)
(hg : Summable g)
:
If a sequence f
with non-negative terms is dominated by a sequence g
with summable
series and at least one term of f
is strictly smaller than the corresponding term in g
,
then the series of f
is strictly smaller than the series of g
.