Documentation

Mathlib.Topology.Bornology.Constructions

Bornology structure on products and subtypes #

In this file we define Bornology and BoundedSpace instances on α × β, Π i, π i, and {x // p x}. We also prove basic lemmas about Bornology.cobounded and Bornology.IsBounded on these types.

instance Prod.instBornology {α : Type u_1} {β : Type u_2} [Bornology α] [Bornology β] :
Bornology (α × β)
Equations
instance Pi.instBornology {ι : Type u_3} {π : ιType u_4} [(i : ι) → Bornology (π i)] :
Bornology ((i : ι) → π i)
Equations
@[reducible, inline]
abbrev Bornology.induced {α : Type u_5} {β : Type u_6} [Bornology β] (f : αβ) :

Inverse image of a bornology.

Equations
Instances For

    Bounded sets in α × β #

    theorem Bornology.IsBounded.image_fst {α : Type u_1} {β : Type u_2} [Bornology α] [Bornology β] {s : Set (α × β)} (hs : Bornology.IsBounded s) :
    theorem Bornology.IsBounded.image_snd {α : Type u_1} {β : Type u_2} [Bornology α] [Bornology β] {s : Set (α × β)} (hs : Bornology.IsBounded s) :
    theorem Bornology.IsBounded.fst_of_prod {α : Type u_1} {β : Type u_2} [Bornology α] [Bornology β] {s : Set α} {t : Set β} (h : Bornology.IsBounded (s ×ˢ t)) (ht : t.Nonempty) :
    theorem Bornology.IsBounded.snd_of_prod {α : Type u_1} {β : Type u_2} [Bornology α] [Bornology β] {s : Set α} {t : Set β} (h : Bornology.IsBounded (s ×ˢ t)) (hs : s.Nonempty) :
    theorem Bornology.IsBounded.prod {α : Type u_1} {β : Type u_2} [Bornology α] [Bornology β] {s : Set α} {t : Set β} (hs : Bornology.IsBounded s) (ht : Bornology.IsBounded t) :
    theorem Bornology.isBounded_prod_of_nonempty {α : Type u_1} {β : Type u_2} [Bornology α] [Bornology β] {s : Set α} {t : Set β} (hne : (s ×ˢ t).Nonempty) :

    Bounded sets in Π i, π i #

    theorem Bornology.cobounded_pi {ι : Type u_3} {π : ιType u_4} [(i : ι) → Bornology (π i)] :
    Bornology.cobounded ((i : ι) → π i) = Filter.coprodᵢ fun (i : ι) => Bornology.cobounded (π i)
    theorem Bornology.forall_isBounded_image_eval_iff {ι : Type u_3} {π : ιType u_4} [(i : ι) → Bornology (π i)] {s : Set ((i : ι) → π i)} :
    theorem Bornology.IsBounded.image_eval {ι : Type u_3} {π : ιType u_4} [(i : ι) → Bornology (π i)] {s : Set ((i : ι) → π i)} (hs : Bornology.IsBounded s) (i : ι) :
    theorem Bornology.IsBounded.pi {ι : Type u_3} {π : ιType u_4} [(i : ι) → Bornology (π i)] {S : (i : ι) → Set (π i)} (h : ∀ (i : ι), Bornology.IsBounded (S i)) :
    theorem Bornology.isBounded_pi_of_nonempty {ι : Type u_3} {π : ιType u_4} [(i : ι) → Bornology (π i)] {S : (i : ι) → Set (π i)} (hne : (Set.univ.pi S).Nonempty) :
    theorem Bornology.isBounded_pi {ι : Type u_3} {π : ιType u_4} [(i : ι) → Bornology (π i)] {S : (i : ι) → Set (π i)} :
    Bornology.IsBounded (Set.univ.pi S) (∃ (i : ι), S i = ) ∀ (i : ι), Bornology.IsBounded (S i)

    Bounded sets in {x // p x} #

    theorem Bornology.isBounded_induced {α : Type u_5} {β : Type u_6} [Bornology β] {f : αβ} {s : Set α} :

    Bounded spaces #

    instance instBoundedSpaceProd {α : Type u_1} {β : Type u_2} [Bornology α] [Bornology β] [BoundedSpace α] [BoundedSpace β] :
    instance instBoundedSpaceForall {ι : Type u_3} {π : ιType u_4} [(i : ι) → Bornology (π i)] [∀ (i : ι), BoundedSpace (π i)] :
    BoundedSpace ((i : ι) → π i)
    theorem boundedSpace_induced_iff {α : Type u_5} {β : Type u_6} [Bornology β] {f : αβ} :
    theorem boundedSpace_subtype_iff {α : Type u_1} [Bornology α] {p : αProp} :
    theorem Bornology.IsBounded.boundedSpace_subtype {α : Type u_1} [Bornology α] {p : αProp} :

    Alias of the reverse direction of boundedSpace_subtype_iff.

    Alias of the reverse direction of boundedSpace_val_set_iff.

    instance instBoundedSpaceSubtype {α : Type u_1} [Bornology α] [BoundedSpace α] {p : αProp} :

    Additive, Multiplicative #

    The bornology on those type synonyms is inherited without change.

    instance instBornologyAdditive {α : Type u_1} [Bornology α] :
    Equations

    Order dual #

    The bornology on this type synonym is inherited without change.