Documentation

Mathlib.Topology.Sets.Compacts

Compact sets #

We define a few types of compact sets in a topological space.

Main Definitions #

For a topological space α,

Compact sets #

structure TopologicalSpace.Compacts (α : Type u_4) [TopologicalSpace α] :
Type u_4

The type of compact sets of a topological space.

  • carrier : Set α

    the carrier set, i.e. the points in this set

  • isCompact' : IsCompact self.carrier
Instances For

    See Note [custom simps projection].

    Equations
    Instances For
      theorem TopologicalSpace.Compacts.ext {α : Type u_1} [TopologicalSpace α] {s t : TopologicalSpace.Compacts α} (h : s = t) :
      s = t
      @[simp]
      theorem TopologicalSpace.Compacts.coe_mk {α : Type u_1} [TopologicalSpace α] (s : Set α) (h : IsCompact s) :
      { carrier := s, isCompact' := h } = s
      Equations
      Equations
      Equations

      The type of compact sets is inhabited, with default element the empty set.

      Equations
      @[simp]
      theorem TopologicalSpace.Compacts.coe_sup {α : Type u_1} [TopologicalSpace α] (s t : TopologicalSpace.Compacts α) :
      (s t) = s t
      @[simp]
      theorem TopologicalSpace.Compacts.coe_inf {α : Type u_1} [TopologicalSpace α] [T2Space α] (s t : TopologicalSpace.Compacts α) :
      (s t) = s t
      @[simp]
      theorem TopologicalSpace.Compacts.coe_finset_sup {α : Type u_1} [TopologicalSpace α] {ι : Type u_4} {s : Finset ι} {f : ιTopologicalSpace.Compacts α} :
      (s.sup f) = s.sup fun (i : ι) => (f i)

      The image of a compact set under a continuous function.

      Equations
      Instances For
        @[simp]
        theorem TopologicalSpace.Compacts.coe_map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Continuous f) (s : TopologicalSpace.Compacts α) :

        A homeomorphism induces an equivalence on compact sets, by taking the image.

        Equations
        Instances For

          The image of a compact set under a homeomorphism can also be expressed as a preimage.

          The product of two TopologicalSpace.Compacts, as a TopologicalSpace.Compacts in the product space.

          Equations
          • K.prod L = { carrier := K ×ˢ L, isCompact' := }
          Instances For
            @[simp]
            theorem TopologicalSpace.Compacts.coe_prod {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (K : TopologicalSpace.Compacts α) (L : TopologicalSpace.Compacts β) :
            (K.prod L) = K ×ˢ L

            Nonempty compact sets #

            The type of nonempty compact sets of a topological space.

            Instances For

              See Note [custom simps projection].

              Equations
              Instances For

                Reinterpret a nonempty compact as a closed set.

                Equations
                • s.toCloseds = { carrier := s, closed' := }
                Instances For
                  @[simp]
                  theorem TopologicalSpace.NonemptyCompacts.coe_mk {α : Type u_1} [TopologicalSpace α] (s : TopologicalSpace.Compacts α) (h : s.carrier.Nonempty) :
                  { toCompacts := s, nonempty' := h } = s
                  Equations

                  In an inhabited space, the type of nonempty compact subsets is also inhabited, with default element the singleton set containing the default element.

                  Equations

                  The product of two TopologicalSpace.NonemptyCompacts, as a TopologicalSpace.NonemptyCompacts in the product space.

                  Equations
                  • K.prod L = { toCompacts := K.prod L.toCompacts, nonempty' := }
                  Instances For

                    Positive compact sets #

                    The type of compact sets with nonempty interior of a topological space. See also TopologicalSpace.Compacts and TopologicalSpace.NonemptyCompacts.

                    Instances For

                      See Note [custom simps projection].

                      Equations
                      Instances For

                        Reinterpret a positive compact as a nonempty compact.

                        Equations
                        • s.toNonemptyCompacts = { toCompacts := s.toCompacts, nonempty' := }
                        Instances For
                          @[simp]
                          theorem TopologicalSpace.PositiveCompacts.coe_mk {α : Type u_1} [TopologicalSpace α] (s : TopologicalSpace.Compacts α) (h : (interior s.carrier).Nonempty) :
                          { toCompacts := s, interior_nonempty' := h } = s
                          Equations

                          The image of a positive compact set under a continuous open map.

                          Equations
                          Instances For
                            @[simp]
                            theorem TopologicalSpace.PositiveCompacts.coe_map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Continuous f) (hf' : IsOpenMap f) (s : TopologicalSpace.PositiveCompacts α) :
                            theorem exists_positiveCompacts_subset {α : Type u_1} [TopologicalSpace α] [LocallyCompactSpace α] {U : Set α} (ho : IsOpen U) (hn : U.Nonempty) :
                            theorem IsOpen.exists_positiveCompacts_closure_subset {α : Type u_1} [TopologicalSpace α] [R1Space α] [LocallyCompactSpace α] {U : Set α} (ho : IsOpen U) (hn : U.Nonempty) :

                            In a nonempty locally compact space, there exists a compact set with nonempty interior.

                            The product of two TopologicalSpace.PositiveCompacts, as a TopologicalSpace.PositiveCompacts in the product space.

                            Equations
                            • K.prod L = { toCompacts := K.prod L.toCompacts, interior_nonempty' := }
                            Instances For

                              Compact open sets #

                              The type of compact open sets of a topological space. This is useful in non Hausdorff contexts, in particular spectral spaces.

                              Instances For

                                See Note [custom simps projection].

                                Equations
                                Instances For

                                  Reinterpret a compact open as an open.

                                  Equations
                                  • s.toOpens = { carrier := s, is_open' := }
                                  Instances For

                                    Reinterpret a compact open as a clopen.

                                    Equations
                                    • s.toClopens = { carrier := s, isClopen' := }
                                    Instances For
                                      @[simp]
                                      theorem TopologicalSpace.CompactOpens.ext {α : Type u_1} [TopologicalSpace α] {s t : TopologicalSpace.CompactOpens α} (h : s = t) :
                                      s = t
                                      @[simp]
                                      theorem TopologicalSpace.CompactOpens.coe_mk {α : Type u_1} [TopologicalSpace α] (s : TopologicalSpace.Compacts α) (h : IsOpen s.carrier) :
                                      { toCompacts := s, isOpen' := h } = s
                                      Equations
                                      Equations
                                      @[simp]
                                      Equations
                                      Equations
                                      @[simp]
                                      theorem TopologicalSpace.CompactOpens.coe_sdiff {α : Type u_1} [TopologicalSpace α] [T2Space α] (s t : TopologicalSpace.CompactOpens α) :
                                      (s \ t) = s \ t
                                      Equations
                                      Equations
                                      @[simp]

                                      The image of a compact open under a continuous open map.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem TopologicalSpace.CompactOpens.map_toCompacts {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) (hf : Continuous f) (hf' : IsOpenMap f) (s : TopologicalSpace.CompactOpens α) :
                                        (TopologicalSpace.CompactOpens.map f hf hf' s).toCompacts = TopologicalSpace.Compacts.map f hf s.toCompacts
                                        @[simp]
                                        theorem TopologicalSpace.CompactOpens.coe_map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Continuous f) (hf' : IsOpenMap f) (s : TopologicalSpace.CompactOpens α) :
                                        (TopologicalSpace.CompactOpens.map f hf hf' s) = f '' s
                                        theorem TopologicalSpace.CompactOpens.map_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : βγ) (g : αβ) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f) (hg' : IsOpenMap g) (K : TopologicalSpace.CompactOpens α) :

                                        The product of two TopologicalSpace.CompactOpens, as a TopologicalSpace.CompactOpens in the product space.

                                        Equations
                                        • K.prod L = { toCompacts := K.prod L.toCompacts, isOpen' := }
                                        Instances For
                                          @[simp]