Documentation

Mathlib.Topology.UniformSpace.UniformConvergence

Uniform convergence #

A sequence of functions Fₙ (with values in a metric space) converges uniformly on a set s to a function f if, for all ε > 0, for all large enough n, one has for all y ∈ s the inequality dist (f y, Fₙ y) < ε. Under uniform convergence, many properties of the Fₙ pass to the limit, most notably continuity. We prove this in the file, defining the notion of uniform convergence in the more general setting of uniform spaces, and with respect to an arbitrary indexing set endowed with a filter (instead of just with atTop).

Main results #

Let α be a topological space, β a uniform space, Fₙ and f be functions from α to β (where the index n belongs to an indexing type ι endowed with a filter p).

Finally, we introduce the notion of a uniform Cauchy sequence, which is to uniform convergence what a Cauchy sequence is to the usual notion of convergence.

Implementation notes #

We derive most of our initial results from an auxiliary definition TendstoUniformlyOnFilter. This definition in and of itself can sometimes be useful, e.g., when studying the local behavior of the Fₙ near a point, which would typically look like TendstoUniformlyOnFilter F f p (𝓝 x). Still, while this may be the "correct" definition (see tendstoUniformlyOn_iff_tendstoUniformlyOnFilter), it is somewhat unwieldy to work with in practice. Thus, we provide the more traditional definition in TendstoUniformlyOn.

Tags #

Uniform limit, uniform convergence, tends uniformly to

Different notions of uniform convergence #

We define uniform convergence, on a set or in the whole space.

def TendstoUniformlyOnFilter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] (F : ιαβ) (f : αβ) (p : Filter ι) (p' : Filter α) :

A sequence of functions Fₙ converges uniformly on a filter p' to a limiting function f with respect to the filter p if, for any entourage of the diagonal u, one has p ×ˢ p'-eventually (f x, Fₙ x) ∈ u.

Equations
Instances For
    theorem tendstoUniformlyOnFilter_iff_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} :
    TendstoUniformlyOnFilter F f p p' Filter.Tendsto (fun (q : ι × α) => (f q.2, F q.1 q.2)) (p ×ˢ p') (uniformity β)

    A sequence of functions Fₙ converges uniformly on a filter p' to a limiting function f w.r.t. filter p iff the function (n, x) ↦ (f x, Fₙ x) converges along p ×ˢ p' to the uniformity. In other words: one knows nothing about the behavior of x in this limit besides it being in p'.

    def TendstoUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] (F : ιαβ) (f : αβ) (p : Filter ι) (s : Set α) :

    A sequence of functions Fₙ converges uniformly on a set s to a limiting function f with respect to the filter p if, for any entourage of the diagonal u, one has p-eventually (f x, Fₙ x) ∈ u for all x ∈ s.

    Equations
    Instances For
      theorem tendstoUniformlyOn_iff_tendstoUniformlyOnFilter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} :
      theorem TendstoUniformlyOn.tendstoUniformlyOnFilter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} :

      Alias of the forward direction of tendstoUniformlyOn_iff_tendstoUniformlyOnFilter.

      theorem TendstoUniformlyOnFilter.tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} :

      Alias of the reverse direction of tendstoUniformlyOn_iff_tendstoUniformlyOnFilter.

      theorem tendstoUniformlyOn_iff_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} :
      TendstoUniformlyOn F f p s Filter.Tendsto (fun (q : ι × α) => (f q.2, F q.1 q.2)) (p ×ˢ Filter.principal s) (uniformity β)

      A sequence of functions Fₙ converges uniformly on a set s to a limiting function f w.r.t. filter p iff the function (n, x) ↦ (f x, Fₙ x) converges along p ×ˢ 𝓟 s to the uniformity. In other words: one knows nothing about the behavior of x in this limit besides it being in s.

      def TendstoUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] (F : ιαβ) (f : αβ) (p : Filter ι) :

      A sequence of functions Fₙ converges uniformly to a limiting function f with respect to a filter p if, for any entourage of the diagonal u, one has p-eventually (f x, Fₙ x) ∈ u for all x.

      Equations
      Instances For
        theorem tendstoUniformlyOn_univ {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} :
        theorem tendstoUniformly_iff_tendstoUniformlyOnFilter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} :
        theorem TendstoUniformly.tendstoUniformlyOnFilter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} (h : TendstoUniformly F f p) :
        theorem tendstoUniformlyOn_iff_tendstoUniformly_comp_coe {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} :
        TendstoUniformlyOn F f p s TendstoUniformly (fun (i : ι) (x : s) => F i x) (f Subtype.val) p
        theorem tendstoUniformly_iff_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} :
        TendstoUniformly F f p Filter.Tendsto (fun (q : ι × α) => (f q.2, F q.1 q.2)) (p ×ˢ ) (uniformity β)

        A sequence of functions Fₙ converges uniformly to a limiting function f w.r.t. filter p iff the function (n, x) ↦ (f x, Fₙ x) converges along p ×ˢ ⊤ to the uniformity. In other words: one knows nothing about the behavior of x in this limit.

        theorem TendstoUniformlyOnFilter.tendsto_at {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {x : α} {p : Filter ι} {p' : Filter α} (h : TendstoUniformlyOnFilter F f p p') (hx : Filter.principal {x} p') :
        Filter.Tendsto (fun (n : ι) => F n x) p (nhds (f x))

        Uniform convergence implies pointwise convergence.

        theorem TendstoUniformlyOn.tendsto_at {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {x : α} {p : Filter ι} (h : TendstoUniformlyOn F f p s) (hx : x s) :
        Filter.Tendsto (fun (n : ι) => F n x) p (nhds (f x))

        Uniform convergence implies pointwise convergence.

        theorem TendstoUniformly.tendsto_at {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} (h : TendstoUniformly F f p) (x : α) :
        Filter.Tendsto (fun (n : ι) => F n x) p (nhds (f x))

        Uniform convergence implies pointwise convergence.

        theorem TendstoUniformlyOnFilter.mono_left {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} {p'' : Filter ι} (h : TendstoUniformlyOnFilter F f p p') (hp : p'' p) :
        theorem TendstoUniformlyOnFilter.mono_right {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' p'' : Filter α} (h : TendstoUniformlyOnFilter F f p p') (hp : p'' p') :
        theorem TendstoUniformlyOn.mono {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s s' : Set α} {p : Filter ι} (h : TendstoUniformlyOn F f p s) (h' : s' s) :
        theorem TendstoUniformlyOnFilter.congr {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} {F' : ιαβ} (hf : TendstoUniformlyOnFilter F f p p') (hff' : ∀ᶠ (n : ι × α) in p ×ˢ p', F n.1 n.2 = F' n.1 n.2) :
        theorem TendstoUniformlyOn.congr {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} {F' : ιαβ} (hf : TendstoUniformlyOn F f p s) (hff' : ∀ᶠ (n : ι) in p, Set.EqOn (F n) (F' n) s) :
        theorem tendstoUniformly_congr {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {F' : ιαβ} (hF : F =ᶠ[p] F') :
        theorem TendstoUniformlyOn.congr_right {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} {g : αβ} (hf : TendstoUniformlyOn F f p s) (hfg : Set.EqOn f g s) :
        theorem TendstoUniformly.tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (h : TendstoUniformly F f p) :
        theorem TendstoUniformlyOnFilter.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} (h : TendstoUniformlyOnFilter F f p p') (g : γα) :
        TendstoUniformlyOnFilter (fun (n : ι) => F n g) (f g) p (Filter.comap g p')

        Composing on the right by a function preserves uniform convergence on a filter

        theorem TendstoUniformlyOn.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (h : TendstoUniformlyOn F f p s) (g : γα) :
        TendstoUniformlyOn (fun (n : ι) => F n g) (f g) p (g ⁻¹' s)

        Composing on the right by a function preserves uniform convergence on a set

        theorem TendstoUniformly.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} (h : TendstoUniformly F f p) (g : γα) :
        TendstoUniformly (fun (n : ι) => F n g) (f g) p

        Composing on the right by a function preserves uniform convergence

        theorem UniformContinuous.comp_tendstoUniformlyOnFilter {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} [UniformSpace γ] {g : βγ} (hg : UniformContinuous g) (h : TendstoUniformlyOnFilter F f p p') :
        TendstoUniformlyOnFilter (fun (i : ι) => g F i) (g f) p p'

        Composing on the left by a uniformly continuous function preserves uniform convergence on a filter

        theorem UniformContinuous.comp_tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} [UniformSpace γ] {g : βγ} (hg : UniformContinuous g) (h : TendstoUniformlyOn F f p s) :
        TendstoUniformlyOn (fun (i : ι) => g F i) (g f) p s

        Composing on the left by a uniformly continuous function preserves uniform convergence on a set

        theorem UniformContinuous.comp_tendstoUniformly {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} [UniformSpace γ] {g : βγ} (hg : UniformContinuous g) (h : TendstoUniformly F f p) :
        TendstoUniformly (fun (i : ι) => g F i) (g f) p

        Composing on the left by a uniformly continuous function preserves uniform convergence

        theorem TendstoUniformlyOnFilter.prodMap {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} {ι' : Type u_5} {α' : Type u_6} {β' : Type u_7} [UniformSpace β'] {F' : ι'α'β'} {f' : α'β'} {q : Filter ι'} {q' : Filter α'} (h : TendstoUniformlyOnFilter F f p p') (h' : TendstoUniformlyOnFilter F' f' q q') :
        TendstoUniformlyOnFilter (fun (i : ι × ι') => Prod.map (F i.1) (F' i.2)) (Prod.map f f') (p ×ˢ q) (p' ×ˢ q')
        @[deprecated TendstoUniformlyOnFilter.prodMap (since := "2025-03-10")]
        theorem TendstoUniformlyOnFilter.prod_map {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} {ι' : Type u_5} {α' : Type u_6} {β' : Type u_7} [UniformSpace β'] {F' : ι'α'β'} {f' : α'β'} {q : Filter ι'} {q' : Filter α'} (h : TendstoUniformlyOnFilter F f p p') (h' : TendstoUniformlyOnFilter F' f' q q') :
        TendstoUniformlyOnFilter (fun (i : ι × ι') => Prod.map (F i.1) (F' i.2)) (Prod.map f f') (p ×ˢ q) (p' ×ˢ q')

        Alias of TendstoUniformlyOnFilter.prodMap.

        theorem TendstoUniformlyOn.prodMap {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} {ι' : Type u_5} {α' : Type u_6} {β' : Type u_7} [UniformSpace β'] {F' : ι'α'β'} {f' : α'β'} {p' : Filter ι'} {s' : Set α'} (h : TendstoUniformlyOn F f p s) (h' : TendstoUniformlyOn F' f' p' s') :
        TendstoUniformlyOn (fun (i : ι × ι') => Prod.map (F i.1) (F' i.2)) (Prod.map f f') (p ×ˢ p') (s ×ˢ s')
        @[deprecated TendstoUniformlyOn.prodMap (since := "2025-03-10")]
        theorem TendstoUniformlyOn.prod_map {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} {ι' : Type u_5} {α' : Type u_6} {β' : Type u_7} [UniformSpace β'] {F' : ι'α'β'} {f' : α'β'} {p' : Filter ι'} {s' : Set α'} (h : TendstoUniformlyOn F f p s) (h' : TendstoUniformlyOn F' f' p' s') :
        TendstoUniformlyOn (fun (i : ι × ι') => Prod.map (F i.1) (F' i.2)) (Prod.map f f') (p ×ˢ p') (s ×ˢ s')

        Alias of TendstoUniformlyOn.prodMap.

        theorem TendstoUniformly.prodMap {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {ι' : Type u_5} {α' : Type u_6} {β' : Type u_7} [UniformSpace β'] {F' : ι'α'β'} {f' : α'β'} {p' : Filter ι'} (h : TendstoUniformly F f p) (h' : TendstoUniformly F' f' p') :
        TendstoUniformly (fun (i : ι × ι') => Prod.map (F i.1) (F' i.2)) (Prod.map f f') (p ×ˢ p')
        @[deprecated TendstoUniformly.prodMap (since := "2025-03-10")]
        theorem TendstoUniformly.prod_map {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {ι' : Type u_5} {α' : Type u_6} {β' : Type u_7} [UniformSpace β'] {F' : ι'α'β'} {f' : α'β'} {p' : Filter ι'} (h : TendstoUniformly F f p) (h' : TendstoUniformly F' f' p') :
        TendstoUniformly (fun (i : ι × ι') => Prod.map (F i.1) (F' i.2)) (Prod.map f f') (p ×ˢ p')

        Alias of TendstoUniformly.prodMap.

        theorem TendstoUniformlyOnFilter.prodMk {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} {ι' : Type u_5} {β' : Type u_6} [UniformSpace β'] {F' : ι'αβ'} {f' : αβ'} {q : Filter ι'} (h : TendstoUniformlyOnFilter F f p p') (h' : TendstoUniformlyOnFilter F' f' q p') :
        TendstoUniformlyOnFilter (fun (i : ι × ι') (a : α) => (F i.1 a, F' i.2 a)) (fun (a : α) => (f a, f' a)) (p ×ˢ q) p'
        @[deprecated TendstoUniformlyOnFilter.prodMk (since := "2025-03-10")]
        theorem TendstoUniformlyOnFilter.prod {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} {ι' : Type u_5} {β' : Type u_6} [UniformSpace β'] {F' : ι'αβ'} {f' : αβ'} {q : Filter ι'} (h : TendstoUniformlyOnFilter F f p p') (h' : TendstoUniformlyOnFilter F' f' q p') :
        TendstoUniformlyOnFilter (fun (i : ι × ι') (a : α) => (F i.1 a, F' i.2 a)) (fun (a : α) => (f a, f' a)) (p ×ˢ q) p'

        Alias of TendstoUniformlyOnFilter.prodMk.

        theorem TendstoUniformlyOn.prodMk {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} {ι' : Type u_5} {β' : Type u_6} [UniformSpace β'] {F' : ι'αβ'} {f' : αβ'} {p' : Filter ι'} (h : TendstoUniformlyOn F f p s) (h' : TendstoUniformlyOn F' f' p' s) :
        TendstoUniformlyOn (fun (i : ι × ι') (a : α) => (F i.1 a, F' i.2 a)) (fun (a : α) => (f a, f' a)) (p ×ˢ p') s
        @[deprecated TendstoUniformlyOn.prodMk (since := "2025-03-10")]
        theorem TendstoUniformlyOn.prod {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} {ι' : Type u_5} {β' : Type u_6} [UniformSpace β'] {F' : ι'αβ'} {f' : αβ'} {p' : Filter ι'} (h : TendstoUniformlyOn F f p s) (h' : TendstoUniformlyOn F' f' p' s) :
        TendstoUniformlyOn (fun (i : ι × ι') (a : α) => (F i.1 a, F' i.2 a)) (fun (a : α) => (f a, f' a)) (p ×ˢ p') s

        Alias of TendstoUniformlyOn.prodMk.

        theorem TendstoUniformly.prodMk {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {ι' : Type u_5} {β' : Type u_6} [UniformSpace β'] {F' : ι'αβ'} {f' : αβ'} {p' : Filter ι'} (h : TendstoUniformly F f p) (h' : TendstoUniformly F' f' p') :
        TendstoUniformly (fun (i : ι × ι') (a : α) => (F i.1 a, F' i.2 a)) (fun (a : α) => (f a, f' a)) (p ×ˢ p')
        @[deprecated TendstoUniformly.prodMk (since := "2025-03-10")]
        theorem TendstoUniformly.prod {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {ι' : Type u_5} {β' : Type u_6} [UniformSpace β'] {F' : ι'αβ'} {f' : αβ'} {p' : Filter ι'} (h : TendstoUniformly F f p) (h' : TendstoUniformly F' f' p') :
        TendstoUniformly (fun (i : ι × ι') (a : α) => (F i.1 a, F' i.2 a)) (fun (a : α) => (f a, f' a)) (p ×ˢ p')

        Alias of TendstoUniformly.prodMk.

        theorem tendsto_prod_filter_iff {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {p : Filter ι} {p' : Filter α} {c : β} :
        Filter.Tendsto (F) (p ×ˢ p') (nhds c) TendstoUniformlyOnFilter F (fun (x : α) => c) p p'

        Uniform convergence on a filter p' to a constant function is equivalent to convergence in p ×ˢ p'.

        theorem tendsto_prod_principal_iff {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {s : Set α} {p : Filter ι} {c : β} :
        Filter.Tendsto (F) (p ×ˢ Filter.principal s) (nhds c) TendstoUniformlyOn F (fun (x : α) => c) p s

        Uniform convergence on a set s to a constant function is equivalent to convergence in p ×ˢ 𝓟 s.

        theorem tendsto_prod_top_iff {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {p : Filter ι} {c : β} :
        Filter.Tendsto (F) (p ×ˢ ) (nhds c) TendstoUniformly F (fun (x : α) => c) p

        Uniform convergence to a constant function is equivalent to convergence in p ×ˢ ⊤.

        theorem tendstoUniformlyOn_empty {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} :

        Uniform convergence on the empty set is vacuously true

        theorem tendstoUniformlyOn_singleton_iff_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {x : α} {p : Filter ι} :
        TendstoUniformlyOn F f p {x} Filter.Tendsto (fun (n : ι) => F n x) p (nhds (f x))

        Uniform convergence on a singleton is equivalent to regular convergence

        theorem Filter.Tendsto.tendstoUniformlyOnFilter_const {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {p : Filter ι} {g : ιβ} {b : β} (hg : Tendsto g p (nhds b)) (p' : Filter α) :
        TendstoUniformlyOnFilter (fun (n : ι) (x : α) => g n) (fun (x : α) => b) p p'

        If a sequence g converges to some b, then the sequence of constant functions fun n ↦ fun a ↦ g n converges to the constant function fun a ↦ b on any set s

        theorem Filter.Tendsto.tendstoUniformlyOn_const {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {p : Filter ι} {g : ιβ} {b : β} (hg : Tendsto g p (nhds b)) (s : Set α) :
        TendstoUniformlyOn (fun (n : ι) (x : α) => g n) (fun (x : α) => b) p s

        If a sequence g converges to some b, then the sequence of constant functions fun n ↦ fun a ↦ g n converges to the constant function fun a ↦ b on any set s

        theorem UniformContinuousOn.tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {γ : Type u_3} [UniformSpace β] {x : α} [UniformSpace α] [UniformSpace γ] {U : Set α} {V : Set β} {F : αβγ} (hF : UniformContinuousOn (F) (U ×ˢ V)) (hU : x U) :
        theorem UniformContinuousOn.tendstoUniformly {α : Type u_1} {β : Type u_2} {γ : Type u_3} [UniformSpace β] {x : α} [UniformSpace α] [UniformSpace γ] {U : Set α} (hU : U nhds x) {F : αβγ} (hF : UniformContinuousOn (F) (U ×ˢ Set.univ)) :
        theorem UniformContinuous₂.tendstoUniformly {α : Type u_1} {β : Type u_2} {γ : Type u_3} [UniformSpace β] {x : α} [UniformSpace α] [UniformSpace γ] {f : αβγ} (h : UniformContinuous₂ f) :
        def UniformCauchySeqOnFilter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] (F : ιαβ) (p : Filter ι) (p' : Filter α) :

        A sequence is uniformly Cauchy if eventually all of its pairwise differences are uniformly bounded

        Equations
        Instances For
          def UniformCauchySeqOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] (F : ιαβ) (p : Filter ι) (s : Set α) :

          A sequence is uniformly Cauchy if eventually all of its pairwise differences are uniformly bounded

          Equations
          Instances For
            theorem uniformCauchySeqOn_iff_uniformCauchySeqOnFilter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {s : Set α} {p : Filter ι} :
            theorem UniformCauchySeqOn.uniformCauchySeqOnFilter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {s : Set α} {p : Filter ι} (hF : UniformCauchySeqOn F p s) :
            theorem TendstoUniformlyOnFilter.uniformCauchySeqOnFilter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} (hF : TendstoUniformlyOnFilter F f p p') :

            A sequence that converges uniformly is also uniformly Cauchy

            theorem TendstoUniformlyOn.uniformCauchySeqOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (hF : TendstoUniformlyOn F f p s) :

            A sequence that converges uniformly is also uniformly Cauchy

            theorem UniformCauchySeqOnFilter.tendstoUniformlyOnFilter_of_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} (hF : UniformCauchySeqOnFilter F p p') (hF' : ∀ᶠ (x : α) in p', Filter.Tendsto (fun (n : ι) => F n x) p (nhds (f x))) :

            A uniformly Cauchy sequence converges uniformly to its limit

            theorem UniformCauchySeqOn.tendstoUniformlyOn_of_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (hF : UniformCauchySeqOn F p s) (hF' : xs, Filter.Tendsto (fun (n : ι) => F n x) p (nhds (f x))) :

            A uniformly Cauchy sequence converges uniformly to its limit

            theorem UniformCauchySeqOnFilter.mono_left {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {p : Filter ι} {p' : Filter α} {p'' : Filter ι} (hf : UniformCauchySeqOnFilter F p p') (hp : p'' p) :
            theorem UniformCauchySeqOnFilter.mono_right {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {p : Filter ι} {p' p'' : Filter α} (hf : UniformCauchySeqOnFilter F p p') (hp : p'' p') :
            theorem UniformCauchySeqOn.mono {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {s s' : Set α} {p : Filter ι} (hf : UniformCauchySeqOn F p s) (hss' : s' s) :
            theorem UniformCauchySeqOnFilter.comp {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {p : Filter ι} {p' : Filter α} {γ : Type u_5} (hf : UniformCauchySeqOnFilter F p p') (g : γα) :
            UniformCauchySeqOnFilter (fun (n : ι) => F n g) p (Filter.comap g p')

            Composing on the right by a function preserves uniform Cauchy sequences

            theorem UniformCauchySeqOn.comp {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {s : Set α} {p : Filter ι} {γ : Type u_5} (hf : UniformCauchySeqOn F p s) (g : γα) :
            UniformCauchySeqOn (fun (n : ι) => F n g) p (g ⁻¹' s)

            Composing on the right by a function preserves uniform Cauchy sequences

            theorem UniformContinuous.comp_uniformCauchySeqOn {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {s : Set α} {p : Filter ι} [UniformSpace γ] {g : βγ} (hg : UniformContinuous g) (hf : UniformCauchySeqOn F p s) :
            UniformCauchySeqOn (fun (n : ι) => g F n) p s

            Composing on the left by a uniformly continuous function preserves uniform Cauchy sequences

            theorem UniformCauchySeqOn.prodMap {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {s : Set α} {p : Filter ι} {ι' : Type u_5} {α' : Type u_6} {β' : Type u_7} [UniformSpace β'] {F' : ι'α'β'} {p' : Filter ι'} {s' : Set α'} (h : UniformCauchySeqOn F p s) (h' : UniformCauchySeqOn F' p' s') :
            UniformCauchySeqOn (fun (i : ι × ι') => Prod.map (F i.1) (F' i.2)) (p ×ˢ p') (s ×ˢ s')
            @[deprecated UniformCauchySeqOn.prodMap (since := "2025-03-10")]
            theorem UniformCauchySeqOn.prod_map {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {s : Set α} {p : Filter ι} {ι' : Type u_5} {α' : Type u_6} {β' : Type u_7} [UniformSpace β'] {F' : ι'α'β'} {p' : Filter ι'} {s' : Set α'} (h : UniformCauchySeqOn F p s) (h' : UniformCauchySeqOn F' p' s') :
            UniformCauchySeqOn (fun (i : ι × ι') => Prod.map (F i.1) (F' i.2)) (p ×ˢ p') (s ×ˢ s')

            Alias of UniformCauchySeqOn.prodMap.

            theorem UniformCauchySeqOn.prod {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {s : Set α} {p : Filter ι} {ι' : Type u_5} {β' : Type u_6} [UniformSpace β'] {F' : ι'αβ'} {p' : Filter ι'} (h : UniformCauchySeqOn F p s) (h' : UniformCauchySeqOn F' p' s) :
            UniformCauchySeqOn (fun (i : ι × ι') (a : α) => (F i.1 a, F' i.2 a)) (p ×ˢ p') s
            theorem UniformCauchySeqOn.prod' {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {s : Set α} {p : Filter ι} {β' : Type u_5} [UniformSpace β'] {F' : ιαβ'} (h : UniformCauchySeqOn F p s) (h' : UniformCauchySeqOn F' p s) :
            UniformCauchySeqOn (fun (i : ι) (a : α) => (F i a, F' i a)) p s
            theorem UniformCauchySeqOn.cauchy_map {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {s : Set α} {x : α} {p : Filter ι} [hp : p.NeBot] (hf : UniformCauchySeqOn F p s) (hx : x s) :
            Cauchy (Filter.map (fun (i : ι) => F i x) p)

            If a sequence of functions is uniformly Cauchy on a set, then the values at each point form a Cauchy sequence.

            theorem UniformCauchySeqOn.cauchySeq {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {s : Set α} {x : α} [Nonempty ι] [SemilatticeSup ι] (hf : UniformCauchySeqOn F Filter.atTop s) (hx : x s) :
            CauchySeq fun (i : ι) => F i x

            If a sequence of functions is uniformly Cauchy on a set, then the values at each point form a Cauchy sequence. See UniformCauchSeqOn.cauchy_map for the non-atTop case.

            theorem tendstoUniformlyOn_of_seq_tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {l : Filter ι} [l.IsCountablyGenerated] (h : ∀ (u : ι), Filter.Tendsto u Filter.atTop lTendstoUniformlyOn (fun (n : ) => F (u n)) f Filter.atTop s) :
            theorem TendstoUniformlyOn.seq_tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {l : Filter ι} (h : TendstoUniformlyOn F f l s) (u : ι) (hu : Filter.Tendsto u Filter.atTop l) :
            TendstoUniformlyOn (fun (n : ) => F (u n)) f Filter.atTop s
            theorem tendstoUniformlyOn_iff_seq_tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {l : Filter ι} [l.IsCountablyGenerated] :
            TendstoUniformlyOn F f l s ∀ (u : ι), Filter.Tendsto u Filter.atTop lTendstoUniformlyOn (fun (n : ) => F (u n)) f Filter.atTop s
            theorem tendstoUniformly_iff_seq_tendstoUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {l : Filter ι} [l.IsCountablyGenerated] :
            TendstoUniformly F f l ∀ (u : ι), Filter.Tendsto u Filter.atTop lTendstoUniformly (fun (n : ) => F (u n)) f Filter.atTop
            theorem TendstoUniformlyOnFilter.tendsto_of_eventually_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} [p.NeBot] {L : ιβ} { : β} (h1 : TendstoUniformlyOnFilter F f p p') (h2 : ∀ᶠ (i : ι) in p, Filter.Tendsto (F i) p' (nhds (L i))) (h3 : Filter.Tendsto L p (nhds )) :
            Filter.Tendsto f p' (nhds )
            theorem TendstoUniformly.tendsto_of_eventually_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {p' : Filter α} [p.NeBot] {L : ιβ} { : β} (h1 : TendstoUniformly F f p) (h2 : ∀ᶠ (i : ι) in p, Filter.Tendsto (F i) p' (nhds (L i))) (h3 : Filter.Tendsto L p (nhds )) :
            Filter.Tendsto f p' (nhds )