@[reducible, inline]
A clause in a CNF.
The literal (i, b)
is satisfied if the assignment to i
agrees with b
.
Equations
Instances For
@[reducible, inline]
A CNF formula.
Literals are identified by members of α
.
Equations
- Std.Sat.CNF α = List (Std.Sat.CNF.Clause α)
Instances For
Evaluating a Clause
with respect to an assignment a
.
Equations
- Std.Sat.CNF.Clause.eval a c = List.any c fun (x : Std.Sat.Literal α) => match x with | (i, n) => a i == n
Instances For
@[simp]
@[simp]
theorem
Std.Sat.CNF.Clause.eval_cons
{α : Type u_1}
{i : Std.Sat.Literal α}
{c : List (Std.Sat.Literal α)}
(a : α → Bool)
:
Std.Sat.CNF.Clause.eval a (i :: c) = (a i.fst == i.snd || Std.Sat.CNF.Clause.eval a c)
Evaluating a CNF
formula with respect to an assignment a
.
Equations
- Std.Sat.CNF.eval a f = List.all f fun (c : Std.Sat.CNF.Clause α) => Std.Sat.CNF.Clause.eval a c
Instances For
@[simp]
@[simp]
theorem
Std.Sat.CNF.eval_cons
{α : Type u_1}
{c : Std.Sat.CNF.Clause α}
{f : List (Std.Sat.CNF.Clause α)}
(a : α → Bool)
:
Std.Sat.CNF.eval a (c :: f) = (Std.Sat.CNF.Clause.eval a c && Std.Sat.CNF.eval a f)
@[simp]
theorem
Std.Sat.CNF.eval_append
{α : Type u_1}
(a : α → Bool)
(f1 f2 : Std.Sat.CNF α)
:
Std.Sat.CNF.eval a (f1 ++ f2) = (Std.Sat.CNF.eval a f1 && Std.Sat.CNF.eval a f2)
Equations
- Std.Sat.CNF.Sat a f = (Std.Sat.CNF.eval a f = true)
Instances For
Equations
- f.Unsat = ∀ (a : α → Bool), Std.Sat.CNF.eval a f = false
Instances For
theorem
Std.Sat.CNF.sat_def
{α : Type u_1}
(a : α → Bool)
(f : Std.Sat.CNF α)
:
Std.Sat.CNF.Sat a f ↔ Std.Sat.CNF.eval a f = true
theorem
Std.Sat.CNF.unsat_def
{α : Type u_1}
(f : Std.Sat.CNF α)
:
f.Unsat ↔ ∀ (a : α → Bool), Std.Sat.CNF.eval a f = false
@[simp]
@[simp]
Variable v
occurs in Clause
c
.
Instances For
instance
Std.Sat.CNF.Clause.instDecidableMemOfDecidableEq
{α : Type u_1}
{v : α}
{c : Std.Sat.CNF.Clause α}
[DecidableEq α]
:
Equations
- Std.Sat.CNF.Clause.instDecidableMemOfDecidableEq = inferInstanceAs (Decidable ((v, false) ∈ c ∨ (v, true) ∈ c))
@[simp]
@[simp]
theorem
Std.Sat.CNF.Clause.mem_cons
{α : Type u_1}
{l : Std.Sat.Literal α}
{c : List (Std.Sat.Literal α)}
{v : α}
:
Std.Sat.CNF.Clause.Mem v (l :: c) ↔ v = l.fst ∨ Std.Sat.CNF.Clause.Mem v c
theorem
Std.Sat.CNF.Clause.mem_of
{α✝ : Type u_1}
{c : Std.Sat.CNF.Clause α✝}
{v : α✝}
{p : Bool}
(h : (v, p) ∈ c)
:
theorem
Std.Sat.CNF.Clause.eval_congr
{α : Type u_1}
(a1 a2 : α → Bool)
(c : Std.Sat.CNF.Clause α)
(hw : ∀ (i : α), Std.Sat.CNF.Clause.Mem i c → a1 i = a2 i)
:
Std.Sat.CNF.Clause.eval a1 c = Std.Sat.CNF.Clause.eval a2 c
Variable v
occurs in CNF
formula f
.
Equations
- Std.Sat.CNF.Mem v f = ∃ (c : Std.Sat.CNF.Clause α), c ∈ f ∧ Std.Sat.CNF.Clause.Mem v c
Instances For
instance
Std.Sat.CNF.instDecidableMemOfDecidableEq
{α : Type u_1}
{v : α}
{f : Std.Sat.CNF α}
[DecidableEq α]
:
Decidable (Std.Sat.CNF.Mem v f)
Equations
- Std.Sat.CNF.instDecidableMemOfDecidableEq = inferInstanceAs (Decidable (∃ (x : Std.Sat.CNF.Clause α), x ∈ f ∧ Std.Sat.CNF.Clause.Mem v x))
theorem
Std.Sat.CNF.any_not_isEmpty_iff_exists_mem
{α : Type u_1}
{f : Std.Sat.CNF α}
:
(List.any f fun (c : Std.Sat.CNF.Clause α) => !List.isEmpty c) = true ↔ ∃ (v : α), Std.Sat.CNF.Mem v f
theorem
Std.Sat.CNF.not_exists_mem
{α✝ : Type u_1}
{f : Std.Sat.CNF α✝}
:
(¬∃ (v : α✝), Std.Sat.CNF.Mem v f) ↔ ∃ (n : Nat), f = List.replicate n []
instance
Std.Sat.CNF.instDecidableExistsMemOfDecidableEq
{α : Type u_1}
{f : Std.Sat.CNF α}
[DecidableEq α]
:
Decidable (∃ (v : α), Std.Sat.CNF.Mem v f)
Equations
- Std.Sat.CNF.instDecidableExistsMemOfDecidableEq = decidable_of_iff ((List.any f fun (c : Std.Sat.CNF.Clause α) => !List.isEmpty c) = true) ⋯
theorem
Std.Sat.CNF.mem_cons
{α : Type u_1}
{v : α}
{c : Std.Sat.CNF.Clause α}
{f : Std.Sat.CNF α}
:
Std.Sat.CNF.Mem v (c :: f) ↔ Std.Sat.CNF.Clause.Mem v c ∨ Std.Sat.CNF.Mem v f
theorem
Std.Sat.CNF.mem_of
{α✝ : Type u_1}
{f : Std.Sat.CNF α✝}
{c : Std.Sat.CNF.Clause α✝}
{v : α✝}
(h : c ∈ f)
(w : Std.Sat.CNF.Clause.Mem v c)
:
Std.Sat.CNF.Mem v f
@[simp]
theorem
Std.Sat.CNF.mem_append
{α : Type u_1}
{v : α}
{f1 f2 : Std.Sat.CNF α}
:
Std.Sat.CNF.Mem v (f1 ++ f2) ↔ Std.Sat.CNF.Mem v f1 ∨ Std.Sat.CNF.Mem v f2
theorem
Std.Sat.CNF.eval_congr
{α : Type u_1}
(a1 a2 : α → Bool)
(f : Std.Sat.CNF α)
(hw : ∀ (v : α), Std.Sat.CNF.Mem v f → a1 v = a2 v)
:
Std.Sat.CNF.eval a1 f = Std.Sat.CNF.eval a2 f