Positive difference #
This file defines the positive difference of set families and sets in an ordered additive group.
Main declarations #
Finset.posDiffs: Positive difference of set families.Finset.posSub: Positive difference of sets in an ordered additive group.
Notations #
We declare the following notation in the finset_family locale:
References #
- [Bollobás, Leader, Radcliffe, *Reverse Kleitman Inequalities][bollobasleaderradcliffe1989]
Positive set difference #
def
Finset.posDiffs
{α : Type u_1}
[GeneralizedBooleanAlgebra α]
[DecidableRel fun (x1 x2 : α) => x1 ≤ x2]
[DecidableEq α]
(s t : Finset α)
:
Finset α
The positive set difference of finsets s and t is the set of a \ b for a ∈ s, b ∈ t,
b ≤ a.
Equations
Instances For
Equations
- FinsetFamily.«term_\₊_» = Lean.ParserDescr.trailingNode `FinsetFamily.«term_\₊_» 70 70 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " \\₊ ") (Lean.ParserDescr.cat `term 71))
Instances For
@[simp]
theorem
Finset.mem_posDiffs
{α : Type u_1}
[GeneralizedBooleanAlgebra α]
[DecidableRel fun (x1 x2 : α) => x1 ≤ x2]
[DecidableEq α]
{s t : Finset α}
{a : α}
:
@[simp]
theorem
Finset.posDiffs_empty
{α : Type u_1}
[GeneralizedBooleanAlgebra α]
[DecidableRel fun (x1 x2 : α) => x1 ≤ x2]
[DecidableEq α]
(s : Finset α)
:
@[simp]
theorem
Finset.empty_posDiffs
{α : Type u_1}
[GeneralizedBooleanAlgebra α]
[DecidableRel fun (x1 x2 : α) => x1 ≤ x2]
[DecidableEq α]
(s : Finset α)
:
theorem
Finset.posDiffs_subset_diffs
{α : Type u_1}
[GeneralizedBooleanAlgebra α]
[DecidableRel fun (x1 x2 : α) => x1 ≤ x2]
[DecidableEq α]
{s t : Finset α}
:
theorem
Finset.card_posDiffs_self_le
{α : Type u_1}
[DecidableEq α]
{𝒜 : Finset (Finset α)}
(h𝒜 : (↑𝒜).OrdConnected)
:
theorem
Finset.le_card_upper_inter_lower
{α : Type u_1}
[DecidableEq α]
{𝒜 ℬ : Finset (Finset α)}
(h𝒜 : IsLowerSet ↑𝒜)
(hℬ : IsUpperSet ↑ℬ)
:
A reverse Kleitman inequality.
Positive subtraction #
def
Finset.posSub
{α : Type u_1}
[Sub α]
[Preorder α]
[DecidableRel fun (x1 x2 : α) => x1 ≤ x2]
[DecidableEq α]
(s t : Finset α)
:
Finset α
The positive subtraction of finsets s and t is the set of a - b for a ∈ s, b ∈ t,
b ≤ a.
Equations
Instances For
Equations
- FinsetFamily.«term_-₊_» = Lean.ParserDescr.trailingNode `FinsetFamily.«term_-₊_» 70 70 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " -₊ ") (Lean.ParserDescr.cat `term 71))
Instances For
theorem
Finset.posSub_subset_sub
{α : Type u_1}
[Sub α]
[Preorder α]
[DecidableRel fun (x1 x2 : α) => x1 ≤ x2]
[DecidableEq α]
{s t : Finset α}
:
theorem
Finset.card_posSub_self_le
{α : Type u_1}
[Sub α]
[Preorder α]
[DecidableRel fun (x1 x2 : α) => x1 ≤ x2]
[DecidableEq α]
{s : Finset α}
(hs : (↑s).OrdConnected)
: