Documentation

MiscYD.SetFamily.PosDiffs

Positive difference #

This file defines the positive difference of set families and sets in an ordered additive group.

Main declarations #

Notations #

We declare the following notation in the finset_family locale:

References #

Positive set difference #

def Finset.posDiffs {α : Type u_1} [GeneralizedBooleanAlgebra α] [DecidableRel fun (x1 x2 : α) => x1 x2] [DecidableEq α] (s t : Finset α) :

The positive set difference of finsets s and t is the set of a \ b for a ∈ s, b ∈ t, b ≤ a.

Equations
Instances For
    @[simp]
    theorem Finset.mem_posDiffs {α : Type u_1} [GeneralizedBooleanAlgebra α] [DecidableRel fun (x1 x2 : α) => x1 x2] [DecidableEq α] {s t : Finset α} {a : α} :
    a s.posDiffs t bs, ct, c b b \ c = a
    @[simp]
    theorem Finset.posDiffs_empty {α : Type u_1} [GeneralizedBooleanAlgebra α] [DecidableRel fun (x1 x2 : α) => x1 x2] [DecidableEq α] (s : Finset α) :
    @[simp]
    theorem Finset.empty_posDiffs {α : Type u_1} [GeneralizedBooleanAlgebra α] [DecidableRel fun (x1 x2 : α) => x1 x2] [DecidableEq α] (s : Finset α) :
    theorem Finset.posDiffs_subset_diffs {α : Type u_1} [GeneralizedBooleanAlgebra α] [DecidableRel fun (x1 x2 : α) => x1 x2] [DecidableEq α] {s t : Finset α} :
    theorem Finset.card_posDiffs_self_le {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} (h𝒜 : (↑𝒜).OrdConnected) :
    (𝒜.posDiffs 𝒜).card 𝒜.card
    theorem Finset.le_card_upper_inter_lower {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} (h𝒜 : IsLowerSet 𝒜) (hℬ : IsUpperSet ) :
    (𝒜.posDiffs ).card (𝒜 ).card

    A reverse Kleitman inequality.

    Positive subtraction #

    def Finset.posSub {α : Type u_1} [Sub α] [Preorder α] [DecidableRel fun (x1 x2 : α) => x1 x2] [DecidableEq α] (s t : Finset α) :

    The positive subtraction of finsets s and t is the set of a - b for a ∈ s, b ∈ t, b ≤ a.

    Equations
    Instances For
      theorem Finset.mem_posSub {α : Type u_1} [Sub α] [Preorder α] [DecidableRel fun (x1 x2 : α) => x1 x2] [DecidableEq α] {s t : Finset α} {a : α} :
      a s.posSub t bs, ct, c b b - c = a
      theorem Finset.posSub_subset_sub {α : Type u_1} [Sub α] [Preorder α] [DecidableRel fun (x1 x2 : α) => x1 x2] [DecidableEq α] {s t : Finset α} :
      s.posSub t s - t
      theorem Finset.card_posSub_self_le {α : Type u_1} [Sub α] [Preorder α] [DecidableRel fun (x1 x2 : α) => x1 x2] [DecidableEq α] {s : Finset α} (hs : (↑s).OrdConnected) :