The zero vector.
Equations
Instances For
Equations
- Vector.instZero = { zero := Vector.zero }
Equations
- Vector.instAdd = { add := Vector.add }
Equations
- Vector.instNeg = { neg := Vector.neg }
Equations
- Vector.instSub = { sub := Vector.sub }
Pointwise multiplication of vectors. This is not a global instance as in some applications different multiplications may be relevant.
Equations
- Vector.instMul = { mul := Vector.mul }
Instances For
def
Vector.hmul
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{n : Nat}
[HMul α β γ]
(c : α)
(xs : Vector β n)
:
Vector γ n
Heterogeneous componentwise scalar multiplication of vectors.
Equations
- Vector.hmul c xs = Vector.map (fun (x : β) => c * x) xs
Instances For
Equations
- Vector.instHMul = { hMul := Vector.hmul }
def
Vector.smul
{α : Type u_1}
{β : Type u_2}
{n : Nat}
[SMul α β]
(c : α)
(xs : Vector β n)
:
Vector β n
Componentwise scalar multiplication of vectors.
Equations
- Vector.smul c xs = Vector.map (fun (x : β) => c • x) xs
Instances For
Equations
- Vector.instSMul = { smul := Vector.smul }
Equations
- Vector.instAddCommMonoid = { toZero := Vector.instZero, toAdd := Vector.instAdd, add_zero := ⋯, add_comm := ⋯, add_assoc := ⋯ }
Equations
- Vector.instAddCommGroup = { toAddCommMonoid := Vector.instAddCommMonoid, toNeg := Vector.instNeg, toSub := Vector.instSub, neg_add_cancel := ⋯, sub_eq_add_neg := ⋯ }
instance
Vector.instNatModule
{α : Type u_1}
{n : Nat}
[Lean.Grind.NatModule α]
:
Lean.Grind.NatModule (Vector α n)
Equations
- Vector.instNatModule = { toAddCommMonoid := Vector.instAddCommMonoid, nsmul := Vector.instHMul, zero_nsmul := ⋯, add_one_nsmul := ⋯ }
instance
Vector.instIntModule
{α : Type u_1}
{n : Nat}
[Lean.Grind.IntModule α]
:
Lean.Grind.IntModule (Vector α n)
Equations
- One or more equations did not get rendered due to their size.
instance
Vector.instNoNatZeroDivisors
{α : Type u_1}
{n : Nat}
[Lean.Grind.NatModule α]
[Lean.Grind.NoNatZeroDivisors α]
: