Documentation

Mathlib.Algebra.Category.CommAlgCat.Basic

The category of commutative algebras over a commutative ring #

This file defines the bundled category CommAlgCat of commutative algebras over a fixed commutative ring R along with the forgetful functors to CommRingCat and AlgCat.

structure CategoryTheory.CommAlgCat (R : Type u) [CommRing R] :
Type (max u (v + 1))

The category of R-algebras and their morphisms.

Instances For
    @[reducible, inline]
    abbrev CategoryTheory.CommAlgCat.of (R : Type u) [CommRing R] (X : Type v) [CommRing X] [Algebra R X] :

    The object in the category of R-algebras associated to a type equipped with the appropriate typeclasses. This is the preferred way to construct a term of CommAlgCat R.

    Equations
    Instances For
      theorem CategoryTheory.CommAlgCat.coe_of (R : Type u) [CommRing R] (X : Type v) [CommRing X] [Algebra R X] :
      (of R X) = X
      structure CategoryTheory.CommAlgCat.Hom {R : Type u} [CommRing R] (A B : CommAlgCat R) :

      The type of morphisms in CommAlgCat R.

      • hom' : A →ₐ[R] B

        The underlying algebra map.

      Instances For
        theorem CategoryTheory.CommAlgCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {A B : CommAlgCat R} {x y : A.Hom B} (hom' : x.hom' = y.hom') :
        x = y
        theorem CategoryTheory.CommAlgCat.Hom.ext_iff {R : Type u} {inst✝ : CommRing R} {A B : CommAlgCat R} {x y : A.Hom B} :
        x = y x.hom' = y.hom'
        Equations
        • One or more equations did not get rendered due to their size.
        Equations
        • One or more equations did not get rendered due to their size.
        @[reducible, inline]
        abbrev CategoryTheory.CommAlgCat.Hom.hom {R : Type u} [CommRing R] {A B : CommAlgCat R} (f : A.Hom B) :
        A →ₐ[R] B

        Turn a morphism in CommAlgCat back into an AlgHom.

        Equations
        Instances For
          @[reducible, inline]
          abbrev CategoryTheory.CommAlgCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [CommRing X] [Algebra R X] [CommRing Y] [Algebra R Y] (f : X →ₐ[R] Y) :
          of R X of R Y

          Typecheck an AlgHom as a morphism in CommAlgCat.

          Equations
          Instances For
            def CategoryTheory.CommAlgCat.Hom.Simps.hom {R : Type u} [CommRing R] (A B : CommAlgCat R) (f : A.Hom B) :
            A →ₐ[R] B

            Use the ConcreteCategory.hom projection for @[simps] lemmas.

            Equations
            Instances For

              The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

              @[simp]
              theorem CategoryTheory.CommAlgCat.hom_comp {R : Type u} [CommRing R] {A B C : CommAlgCat R} (f : A B) (g : B C) :
              theorem CategoryTheory.CommAlgCat.hom_ext {R : Type u} [CommRing R] {A B : CommAlgCat R} {f g : A B} (hf : Hom.hom f = Hom.hom g) :
              f = g
              theorem CategoryTheory.CommAlgCat.hom_ext_iff {R : Type u} [CommRing R] {A B : CommAlgCat R} {f g : A B} :
              @[simp]
              theorem CategoryTheory.CommAlgCat.hom_ofHom {R : Type u} [CommRing R] {X Y : Type v} [CommRing X] [Algebra R X] [CommRing Y] [Algebra R Y] (f : X →ₐ[R] Y) :
              @[simp]
              theorem CategoryTheory.CommAlgCat.ofHom_hom {R : Type u} [CommRing R] {A B : CommAlgCat R} (f : A B) :
              @[simp]
              theorem CategoryTheory.CommAlgCat.ofHom_comp {R : Type u} [CommRing R] {X Y Z : Type v} [CommRing X] [Algebra R X] [CommRing Y] [Algebra R Y] [CommRing Z] [Algebra R Z] (f : X →ₐ[R] Y) (g : Y →ₐ[R] Z) :
              theorem CategoryTheory.CommAlgCat.ofHom_apply {R : Type u} [CommRing R] {X Y : Type v} [CommRing X] [Algebra R X] [CommRing Y] [Algebra R Y] (f : X →ₐ[R] Y) (x : X) :
              Equations
              • One or more equations did not get rendered due to their size.
              Equations
              • One or more equations did not get rendered due to their size.
              def CategoryTheory.CommAlgCat.isoMk {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : Algebra R X} {x✝³ : Algebra R Y} (e : X ≃ₐ[R] Y) :
              of R X of R Y

              Build an isomorphism in the category CommAlgCat R from an AlgEquiv between commutative Algebras.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.CommAlgCat.isoMk_inv {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : Algebra R X} {x✝³ : Algebra R Y} (e : X ≃ₐ[R] Y) :
                (isoMk e).inv = ofHom e.symm
                @[simp]
                theorem CategoryTheory.CommAlgCat.isoMk_hom {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : Algebra R X} {x✝³ : Algebra R Y} (e : X ≃ₐ[R] Y) :
                (isoMk e).hom = ofHom e
                def CategoryTheory.CommAlgCat.ofIso {R : Type u} [CommRing R] {A B : CommAlgCat R} (i : A B) :
                A ≃ₐ[R] B

                Build an AlgEquiv from an isomorphism in the category CommAlgCat R.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CategoryTheory.CommAlgCat.ofIso_apply {R : Type u} [CommRing R] {A B : CommAlgCat R} (i : A B) (a : A) :
                  @[simp]
                  theorem CategoryTheory.CommAlgCat.ofIso_symm_apply {R : Type u} [CommRing R] {A B : CommAlgCat R} (i : A B) (a : B) :
                  def CategoryTheory.CommAlgCat.isoEquivAlgEquiv {R : Type u} [CommRing R] {X Y : Type v} [CommRing X] [Algebra R X] [CommRing Y] [Algebra R Y] :
                  (of R X of R Y) X ≃ₐ[R] Y

                  Algebra equivalences between Algebras are the same as isomorphisms in CommAlgCat.

                  Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.CommAlgCat.isoEquivAlgEquiv_apply {R : Type u} [CommRing R] {X Y : Type v} [CommRing X] [Algebra R X] [CommRing Y] [Algebra R Y] (i : of R X of R Y) :

                    The category of commutative algebras over a commutative ring R is the same as commutative rings under R.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem CategoryTheory.commAlgCatEquivUnder_counitIso (R : CommRingCat) :
                      (commAlgCatEquivUnder R).counitIso = Iso.refl ({ obj := fun (A : Under R) => CommAlgCat.of R A.right, map := fun {A B : Under R} (f : A B) => CommAlgCat.ofHom (CommRingCat.toAlgHom f), map_id := , map_comp := }.comp { obj := fun (A : CommAlgCat R) => R.mkUnder A, map := fun {A B : CommAlgCat R} (f : A B) => (CommAlgCat.Hom.hom f).toUnder, map_id := , map_comp := })
                      @[simp]
                      theorem CategoryTheory.commAlgCatEquivUnder_unitIso (R : CommRingCat) :
                      (commAlgCatEquivUnder R).unitIso = NatIso.ofComponents (fun (A : CommAlgCat R) => CommAlgCat.isoMk (let __RingEquiv := RingEquiv.refl A; { toEquiv := __RingEquiv.toEquiv, map_mul' := , map_add' := , commutes' := }))