Documentation

Mathlib.Algebra.Group.Action.TransferInstance

Transfer algebraic structures across Equivs #

This continues the pattern set in Mathlib/Algebra/Group/TransferInstance.lean.

@[reducible, inline]
abbrev Equiv.mulAction (M : Type u_1) {α : Type u_4} {β : Type u_5} [Monoid M] (e : α β) [MulAction M β] :

Transfer MulAction across an Equiv

Equations
Instances For
    @[reducible, inline]
    abbrev Equiv.addAction (M : Type u_1) {α : Type u_4} {β : Type u_5} [AddMonoid M] (e : α β) [AddAction M β] :

    Transfer AddAction across an Equiv

    Equations
    Instances For
      theorem Equiv.smulCommClass (M : Type u_1) (N : Type u_2) {α : Type u_4} {β : Type u_5} [SMul M β] [SMul N β] (e : α β) [SMulCommClass M N β] :

      Transfer SMulCommClass across an Equiv

      theorem Equiv.vaddCommClass (M : Type u_1) (N : Type u_2) {α : Type u_4} {β : Type u_5} [VAdd M β] [VAdd N β] (e : α β) [VAddCommClass M N β] :

      Transfer VAddCommClass across an Equiv

      theorem Equiv.isScalarTower (M : Type u_1) (N : Type u_2) {α : Type u_4} {β : Type u_5} [SMul M N] [SMul M β] [SMul N β] (e : α β) [IsScalarTower M N β] :

      Transfer IsScalarTower across an Equiv

      theorem Equiv.vaddAssocClass (M : Type u_1) (N : Type u_2) {α : Type u_4} {β : Type u_5} [VAdd M N] [VAdd M β] [VAdd N β] (e : α β) [VAddAssocClass M N β] :

      Transfer VAddAssocClass across an Equiv

      theorem Equiv.isCentralScalar (M : Type u_1) {α : Type u_4} {β : Type u_5} [SMul M β] [SMul Mᵐᵒᵖ β] (e : α β) [IsCentralScalar M β] :

      Transfer IsCentralScalar across an Equiv

      theorem Equiv.isCentralVAdd (M : Type u_1) {α : Type u_4} {β : Type u_5} [VAdd M β] [VAdd Mᵃᵒᵖ β] (e : α β) [IsCentralVAdd M β] :

      Transfer IsCentralVAdd across an Equiv

      @[reducible, inline]
      abbrev Equiv.mulDistribMulAction (M : Type u_1) {N : Type u_2} {O : Type u_3} [Monoid M] [Monoid O] (e : N O) [MulDistribMulAction M O] :

      Transfer MulDistribMulAction across an Equiv

      Equations
      Instances For