Documentation

Mathlib.Algebra.Group.Irreducible.Lemmas

More lemmas about irreducible elements #

theorem not_irreducible_pow {M : Type u_2} [Monoid M] {x : M} {n : } :
n 1¬Irreducible (x ^ n)
theorem not_addIrreducible_nsmul {M : Type u_2} [AddMonoid M] {x : M} {n : } :
n 1¬AddIrreducible (n x)
theorem irreducible_units_mul {M : Type u_2} [Monoid M] {y : M} (u : Mˣ) :
theorem irreducible_isUnit_mul {M : Type u_2} [Monoid M] {x y : M} (h : IsUnit x) :
theorem irreducible_mul_units {M : Type u_2} [Monoid M] {y : M} (u : Mˣ) :
theorem irreducible_mul_isUnit {M : Type u_2} [Monoid M] {x y : M} (h : IsUnit x) :
theorem MulEquiv.irreducible_iff {F : Type u_1} {M : Type u_2} {N : Type u_3} [Monoid M] [Monoid N] {x : M} [EquivLike F M N] [MulEquivClass F M N] (f : F) :
theorem AddEquiv.addIrreducible_iff {F : Type u_1} {M : Type u_2} {N : Type u_3} [AddMonoid M] [AddMonoid N] {x : M} [EquivLike F M N] [AddEquivClass F M N] (f : F) :
theorem Irreducible.map {F : Type u_1} {M : Type u_2} {N : Type u_3} [Monoid M] [Monoid N] {x : M} [EquivLike F M N] [MulEquivClass F M N] (f : F) :

Irreducibility is preserved by multiplicative equivalences.

Note that surjective + local hom is not enough. Consider the additive monoids M = ℕ ⊕ ℕ, N = ℕ, with x surjective local (additive) hom f : M →+ N sending (m, n) to 2m + n. It is local because the only add unit in N is 0, with preimage {(0, 0)} also an add unit. Then x = (1, 0) is irreducible in M, but f x = 2 = 1 + 1 is not irreducible in N.

theorem AddIrreducible.map {F : Type u_1} {M : Type u_2} {N : Type u_3} [AddMonoid M] [AddMonoid N] {x : M} [EquivLike F M N] [AddEquivClass F M N] (f : F) :

Irreducibility is preserved by additive equivalences.

theorem Irreducible.of_map {F : Type u_1} {M : Type u_2} {N : Type u_3} [Monoid M] [Monoid N] {f : F} {x : M} [FunLike F M N] [MonoidHomClass F M N] [IsLocalHom f] (hfx : Irreducible (f x)) :
theorem Irreducible.not_isSquare {M : Type u_2} [Monoid M] {x : M} (ha : Irreducible x) :
theorem AddIrreducible.not_even {M : Type u_2} [AddMonoid M] {x : M} (ha : AddIrreducible x) :
@[deprecated Irreducible.not_isSquare (since := "2025-04-17")]
theorem Irreducible.not_square {M : Type u_2} [Monoid M] {x : M} (ha : Irreducible x) :

Alias of Irreducible.not_isSquare.

theorem IsSquare.not_irreducible {M : Type u_2} [Monoid M] {x : M} (ha : IsSquare x) :
theorem Even.not_addIrreducible {M : Type u_2} [AddMonoid M] {x : M} (ha : Even x) :