Documentation

Mathlib.Algebra.Group.Subgroup.Order

Facts about ordered structures and ordered instances on subgroups #

@[simp]
theorem mabs_mem_iff {S : Type u_1} {G : Type u_2} [Group G] [LinearOrder G] {x✝ : SetLike S G} [InvMemClass S G] {H : S} {x : G} :
mabs x H x H
@[simp]
theorem abs_mem_iff {S : Type u_1} {G : Type u_2} [AddGroup G] [LinearOrder G] {x✝ : SetLike S G} [NegMemClass S G] {H : S} {x : G} :
|x| H x H

In a group that satisfies the normalizer condition, every maximal subgroup is normal

@[simp]
theorem Subgroup.isCoatom_comap {G : Type u_1} [Group G] {H : Type u_2} [Group H] (f : G ≃* H) {K : Subgroup H} :
IsCoatom (comap (↑f) K) IsCoatom K
@[simp]
theorem Subgroup.isCoatom_map {G : Type u_1} [Group G] (H : Subgroup G) (f : G ≃* H) {K : Subgroup G} :
IsCoatom (map (↑f) K) IsCoatom K
theorem Subgroup.isCoatom_comap_of_surjective {G : Type u_1} [Group G] {H : Type u_2} [Group H] {φ : G →* H} ( : Function.Surjective φ) {M : Subgroup H} (hM : IsCoatom M) :

A subgroup of an ordered group is an ordered group.

An AddSubgroup of an AddOrderedCommGroup is an AddOrderedCommGroup.

theorem MulEquiv.strictMono_symm {G : Type u_1} {G' : Type u_2} [CommMonoid G] [LinearOrder G] [CommMonoid G'] [PartialOrder G'] {e : G ≃* G'} (he : StrictMono e) :
theorem AddEquiv.strictMono_symm {G : Type u_1} {G' : Type u_2} [AddCommMonoid G] [LinearOrder G] [AddCommMonoid G'] [PartialOrder G'] {e : G ≃+ G'} (he : StrictMono e) :