Facts about ordered structures and ordered instances on subgroups #
@[simp]
theorem
mabs_mem_iff
{S : Type u_1}
{G : Type u_2}
[Group G]
[LinearOrder G]
{x✝ : SetLike S G}
[InvMemClass S G]
{H : S}
{x : G}
:
@[simp]
theorem
abs_mem_iff
{S : Type u_1}
{G : Type u_2}
[AddGroup G]
[LinearOrder G]
{x✝ : SetLike S G}
[NegMemClass S G]
{H : S}
{x : G}
:
theorem
Subgroup.NormalizerCondition.normal_of_coatom
{G : Type u_1}
[Group G]
(H : Subgroup G)
(hnc : NormalizerCondition G)
(hmax : IsCoatom H)
:
H.Normal
In a group that satisfies the normalizer condition, every maximal subgroup is normal
instance
Subgroup.toIsOrderedMonoid
{G : Type u_1}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
(H : Subgroup G)
:
A subgroup of an ordered group is an ordered group.
instance
AddSubgroup.toIsOrderedAddMonoid
{G : Type u_1}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(H : AddSubgroup G)
:
An AddSubgroup
of an AddOrderedCommGroup
is an AddOrderedCommGroup
.
theorem
MulEquiv.strictMono_subsemigroupCongr
{G : Type u_1}
[CommMonoid G]
[PartialOrder G]
{S T : Subsemigroup G}
(h : S = T)
:
theorem
AddEquiv.strictMono_subsemigroupCongr
{G : Type u_1}
[AddCommMonoid G]
[PartialOrder G]
{S T : AddSubsemigroup G}
(h : S = T)
:
theorem
MulEquiv.strictMono_symm
{G : Type u_1}
{G' : Type u_2}
[CommMonoid G]
[LinearOrder G]
[CommMonoid G']
[PartialOrder G']
{e : G ≃* G'}
(he : StrictMono ⇑e)
:
StrictMono ⇑e.symm
theorem
AddEquiv.strictMono_symm
{G : Type u_1}
{G' : Type u_2}
[AddCommMonoid G]
[LinearOrder G]
[AddCommMonoid G']
[PartialOrder G']
{e : G ≃+ G'}
(he : StrictMono ⇑e)
:
StrictMono ⇑e.symm