Short complexes in functor categories #
In this file, it is shown that if J
and C
are two categories (such
that C
has zero morphisms), then there is an equivalence of categories
ShortComplex.functorEquivalence J C : ShortComplex (J ⥤ C) ≌ J ⥤ ShortComplex C
.
def
CategoryTheory.ShortComplex.FunctorEquivalence.functor
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
Functor (ShortComplex (Functor J C)) (Functor J (ShortComplex C))
The obvious functor ShortComplex (J ⥤ C) ⥤ J ⥤ ShortComplex C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.functor_obj_obj
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(S : ShortComplex (Functor J C))
(j : J)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.functor_map_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
{X✝ Y✝ : ShortComplex (Functor J C)}
(φ : X✝ ⟶ Y✝)
(j : J)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.functor_obj_map
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(S : ShortComplex (Functor J C))
{X✝ Y✝ : J}
(f : X✝ ⟶ Y✝)
:
def
CategoryTheory.ShortComplex.FunctorEquivalence.inverse
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
Functor (Functor J (ShortComplex C)) (ShortComplex (Functor J C))
The obvious functor (J ⥤ ShortComplex C) ⥤ ShortComplex (J ⥤ C)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_X₂
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(F : Functor J (ShortComplex C))
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_X₃
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(F : Functor J (ShortComplex C))
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_f
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(F : Functor J (ShortComplex C))
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_g
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(F : Functor J (ShortComplex C))
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₂
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
{X✝ Y✝ : Functor J (ShortComplex C)}
(φ : X✝ ⟶ Y✝)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_X₁
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(F : Functor J (ShortComplex C))
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₃
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
{X✝ Y✝ : Functor J (ShortComplex C)}
(φ : X✝ ⟶ Y✝)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₁
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
{X✝ Y✝ : Functor J (ShortComplex C)}
(φ : X✝ ⟶ Y✝)
:
def
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
The unit isomorphism of the equivalence
ShortComplex.functorEquivalence : ShortComplex (J ⥤ C) ≌ J ⥤ ShortComplex C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_inv_app_τ₃_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : ShortComplex (Functor J C))
(X✝ : J)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_hom_app_τ₃_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : ShortComplex (Functor J C))
(X✝ : J)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_inv_app_τ₁_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : ShortComplex (Functor J C))
(X✝ : J)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_hom_app_τ₂_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : ShortComplex (Functor J C))
(X✝ : J)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_inv_app_τ₂_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : ShortComplex (Functor J C))
(X✝ : J)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_hom_app_τ₁_app
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : ShortComplex (Functor J C))
(X✝ : J)
:
def
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
The counit isomorphism of the equivalence
ShortComplex.functorEquivalence : ShortComplex (J ⥤ C) ≌ J ⥤ ShortComplex C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_hom_app_app_τ₃
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : Functor J (ShortComplex C))
(X✝ : J)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_inv_app_app_τ₂
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : Functor J (ShortComplex C))
(X✝ : J)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_hom_app_app_τ₂
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : Functor J (ShortComplex C))
(X✝ : J)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_inv_app_app_τ₃
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : Functor J (ShortComplex C))
(X✝ : J)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_inv_app_app_τ₁
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : Functor J (ShortComplex C))
(X✝ : J)
:
@[simp]
theorem
CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_hom_app_app_τ₁
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
(X : Functor J (ShortComplex C))
(X✝ : J)
:
def
CategoryTheory.ShortComplex.functorEquivalence
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
The obvious equivalence ShortComplex (J ⥤ C) ≌ J ⥤ ShortComplex C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.ShortComplex.functorEquivalence_counitIso
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
@[simp]
theorem
CategoryTheory.ShortComplex.functorEquivalence_unitIso
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
@[simp]
theorem
CategoryTheory.ShortComplex.functorEquivalence_functor
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
:
@[simp]
theorem
CategoryTheory.ShortComplex.functorEquivalence_inverse
(J : Type u_1)
(C : Type u_2)
[Category.{u_3, u_1} J]
[Category.{u_4, u_2} C]
[Limits.HasZeroMorphisms C]
: