Some lemmas about linear functionals on division rings #
This file proves some results on linear functionals on division semirings.
Main results #
LinearMap.surjective_iff_ne_zero
: a linear functionalf
is surjective ifff ≠ 0
.LinearMap.range_smulRight_apply
: for a nonzero linear functionalf
and elementx
, the range off.smulRight x
is the span of the set{x}
.
theorem
LinearMap.surjective_iff_ne_zero
{R : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
[DivisionSemiring R]
[Module R M]
{f : M →ₗ[R] R}
:
theorem
LinearMap.surjective
{R : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
[DivisionSemiring R]
[Module R M]
{f : M →ₗ[R] R}
:
f ≠ 0 → Function.Surjective ⇑f
Alias of the reverse direction of LinearMap.surjective_iff_ne_zero
.
theorem
LinearMap.range_smulRight_apply_of_surjective
{R : Type u_1}
{M : Type u_2}
{M₁ : Type u_3}
[AddCommMonoid M]
[AddCommMonoid M₁]
[Semiring R]
[Module R M]
[Module R M₁]
{f : M →ₗ[R] R}
(hf : Function.Surjective ⇑f)
(x : M₁)
:
theorem
LinearMap.range_smulRight_apply
{R : Type u_1}
{M : Type u_2}
{M₁ : Type u_3}
[AddCommMonoid M]
[AddCommMonoid M₁]
[DivisionSemiring R]
[Module R M]
[Module R M₁]
{f : M →ₗ[R] R}
(hf : f ≠ 0)
(x : M₁)
: