The ZMod n
-module structure on commutative monoids whose elements have order dividing n ≠ 0
.
Also implies a group structure via Module.addCommMonoidToAddCommGroup
.
See note [reducible non-instances].
Equations
- AddCommMonoid.zmodModule h = match n, h, ⋯, ⋯ with | n.succ, h, h_mod, this => Module.mk ⋯ ⋯
Instances For
The ZMod n
-module structure on Abelian groups whose elements have order dividing n
.
See note [reducible non-instances].
Equations
Instances For
The quotient of an abelian group by a subgroup containing all multiples of n
is a
n
-torsion group.
Equations
Instances For
Reinterpret an additive homomorphism as a ℤ/nℤ
-linear map.
See also:
AddMonoidHom.toIntLinearMap
, AddMonoidHom.toNatLinearMap
, AddMonoidHom.toRatLinearMap
Equations
- AddMonoidHom.toZModLinearMap n f = { toFun := (↑f).toFun, map_add' := ⋯, map_smul' := ⋯ }
Instances For
AddMonoidHom.toZModLinearMap
as an equivalence.
Equations
- AddMonoidHom.toZModLinearMapEquiv n = { toFun := fun (f : M →+ M₁) => AddMonoidHom.toZModLinearMap n f, invFun := fun (g : M →ₗ[ZMod n] M₁) => ↑g, left_inv := ⋯, right_inv := ⋯, map_add' := ⋯ }
Instances For
Reinterpret an additive subgroup of a ℤ/nℤ
-module as a ℤ/nℤ
-submodule.
See also: AddSubgroup.toIntSubmodule
, AddSubmonoid.toNatSubmodule
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
In an elementary abelian p
-group, every finite subgroup H
contains a further subgroup of
cardinality between k
and p * k
, if k ≤ |H|
.