Monoid algebras and the opposite ring #
Multiplicative monoids #
The opposite of a MonoidAlgebra R I
equivalent as a ring to
the MonoidAlgebra Rᵐᵒᵖ Iᵐᵒᵖ
over the opposite ring, taking elements to their opposite.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
MonoidAlgebra.opRingEquiv_single
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Mul G]
(r : k)
(x : G)
:
MonoidAlgebra.opRingEquiv (MulOpposite.op (single x r)) = single (MulOpposite.op x) (MulOpposite.op r)
theorem
MonoidAlgebra.opRingEquiv_symm_single
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Mul G]
(r : kᵐᵒᵖ)
(x : Gᵐᵒᵖ)
:
MonoidAlgebra.opRingEquiv.symm (single x r) = MulOpposite.op (single (MulOpposite.unop x) (MulOpposite.unop r))
Additive monoids #
noncomputable def
AddMonoidAlgebra.opRingEquiv
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[AddCommMagma G]
:
The opposite of an R[I]
is ring equivalent to
the AddMonoidAlgebra Rᵐᵒᵖ I
over the opposite ring, taking elements to their opposite.
Equations
- AddMonoidAlgebra.opRingEquiv = { toEquiv := (MulOpposite.opAddEquiv.symm.trans (Finsupp.mapRange.addEquiv MulOpposite.opAddEquiv)).toEquiv, map_mul' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
AddMonoidAlgebra.opRingEquiv_apply
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[AddCommMagma G]
(a✝ : (G →₀ k)ᵐᵒᵖ)
:
@[simp]
theorem
AddMonoidAlgebra.opRingEquiv_symm_apply
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[AddCommMagma G]
(a✝ : G →₀ kᵐᵒᵖ)
:
theorem
AddMonoidAlgebra.opRingEquiv_single
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[AddCommMagma G]
(r : k)
(x : G)
:
theorem
AddMonoidAlgebra.opRingEquiv_symm_single
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[AddCommMagma G]
(r : kᵐᵒᵖ)
(x : Gᵐᵒᵖ)
: