Documentation

Mathlib.Algebra.Order.Field.Defs

Linear ordered (semi)fields #

A linear ordered (semi)field is a (semi)field equipped with a linear order such that

Main Definitions #

@[deprecated "Use `[Semifield K] [LinearOrder K] [IsStrictOrderedRing K]` instead." (since := "2025-04-10")]

A linear ordered semifield is a field with a linear order respecting the operations.

Instances For
    @[deprecated "Use `[Field K] [LinearOrder K] [IsStrictOrderedRing K]` instead." (since := "2025-04-10")]
    structure LinearOrderedField (K : Type u_2) extends LinearOrderedCommRing K, Field K :
    Type u_2

    A linear ordered field is a field with a linear order respecting the operations.

    Instances For
      theorem mul_inv_le_one {K : Type u_1} [Semifield K] [LinearOrder K] {a : K} [ZeroLEOneClass K] :
      a * a⁻¹ 1

      Equality holds when a ≠ 0. See mul_inv_cancel.

      theorem inv_mul_le_one {K : Type u_1} [Semifield K] [LinearOrder K] {a : K} [ZeroLEOneClass K] :
      a⁻¹ * a 1

      Equality holds when a ≠ 0. See inv_mul_cancel.

      theorem mul_inv_left_le {K : Type u_1} [Semifield K] [LinearOrder K] {a b : K} (hb : 0 b) :
      a * (a⁻¹ * b) b

      Equality holds when a ≠ 0. See mul_inv_cancel_left.

      theorem le_mul_inv_left {K : Type u_1} [Semifield K] [LinearOrder K] {a b : K} (hb : b 0) :
      b a * (a⁻¹ * b)

      Equality holds when a ≠ 0. See mul_inv_cancel_left.

      theorem inv_mul_left_le {K : Type u_1} [Semifield K] [LinearOrder K] {a b : K} (hb : 0 b) :
      a⁻¹ * (a * b) b

      Equality holds when a ≠ 0. See inv_mul_cancel_left.

      theorem le_inv_mul_left {K : Type u_1} [Semifield K] [LinearOrder K] {a b : K} (hb : b 0) :
      b a⁻¹ * (a * b)

      Equality holds when a ≠ 0. See inv_mul_cancel_left.

      theorem mul_inv_right_le {K : Type u_1} [Semifield K] [LinearOrder K] {a b : K} (ha : 0 a) :
      a * b * b⁻¹ a

      Equality holds when b ≠ 0. See mul_inv_cancel_right.

      theorem le_mul_inv_right {K : Type u_1} [Semifield K] [LinearOrder K] {a b : K} (ha : a 0) :
      a a * b * b⁻¹

      Equality holds when b ≠ 0. See mul_inv_cancel_right.

      theorem inv_mul_right_le {K : Type u_1} [Semifield K] [LinearOrder K] {a b : K} (ha : 0 a) :
      a * b⁻¹ * b a

      Equality holds when b ≠ 0. See inv_mul_cancel_right.

      theorem le_inv_mul_right {K : Type u_1} [Semifield K] [LinearOrder K] {a b : K} (ha : a 0) :
      a a * b⁻¹ * b

      Equality holds when b ≠ 0. See inv_mul_cancel_right.

      theorem mul_div_mul_left_le {K : Type u_1} [Semifield K] [LinearOrder K] {a b c : K} (h : 0 a / b) :
      c * a / (c * b) a / b

      Equality holds when c ≠ 0. See mul_div_mul_left.

      theorem le_mul_div_mul_left {K : Type u_1} [Semifield K] [LinearOrder K] {a b c : K} (h : a / b 0) :
      a / b c * a / (c * b)

      Equality holds when c ≠ 0. See mul_div_mul_left.

      theorem mul_div_mul_right_le {K : Type u_1} [Semifield K] [LinearOrder K] {a b c : K} (h : 0 a / b) :
      a * c / (b * c) a / b

      Equality holds when c ≠ 0. See mul_div_mul_right.

      theorem le_mul_div_mul_right {K : Type u_1} [Semifield K] [LinearOrder K] {a b c : K} (h : a / b 0) :
      a / b a * c / (b * c)

      Equality holds when c ≠ 0. See mul_div_mul_right.