Linear ordered (semi)fields #
A linear ordered (semi)field is a (semi)field equipped with a linear order such that
- addition respects the order:
a ≤ b → c + a ≤ c + b
; - multiplication of positives is positive:
0 < a → 0 < b → 0 < a * b
; 0 < 1
.
Main Definitions #
LinearOrderedSemifield
: Typeclass for linear order semifields.LinearOrderedField
: Typeclass for linear ordered fields.
A linear ordered semifield is a field with a linear order respecting the operations.
- add : K → K → K
- zero : K
- mul : K → K → K
- one : K
- min : K → K → K
- max : K → K → K
- inv : K → K
- div : K → K → K
Instances For
A linear ordered field is a field with a linear order respecting the operations.
- add : K → K → K
- zero : K
- mul : K → K → K
- one : K
- neg : K → K
- sub : K → K → K
- min : K → K → K
- max : K → K → K
- inv : K → K
- div : K → K → K
Instances For
Equality holds when a ≠ 0
. See mul_inv_cancel
.
Equality holds when a ≠ 0
. See inv_mul_cancel
.
Equality holds when a ≠ 0
. See mul_inv_cancel_left
.
Equality holds when a ≠ 0
. See mul_inv_cancel_left
.
Equality holds when a ≠ 0
. See inv_mul_cancel_left
.
Equality holds when a ≠ 0
. See inv_mul_cancel_left
.
Equality holds when b ≠ 0
. See mul_inv_cancel_right
.
Equality holds when b ≠ 0
. See mul_inv_cancel_right
.
Equality holds when b ≠ 0
. See inv_mul_cancel_right
.
Equality holds when b ≠ 0
. See inv_mul_cancel_right
.
Equality holds when c ≠ 0
. See mul_div_mul_left
.
Equality holds when c ≠ 0
. See mul_div_mul_left
.
Equality holds when c ≠ 0
. See mul_div_mul_right
.
Equality holds when c ≠ 0
. See mul_div_mul_right
.