Lemmas about arithmetic operations and intervals. #
inv_mem_Ixx_iff
, sub_mem_Ixx_iff
theorem
Set.inv_mem_Icc_iff
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{a c d : α}
:
theorem
Set.neg_mem_Icc_iff
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a c d : α}
:
theorem
Set.inv_mem_Ico_iff
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{a c d : α}
:
theorem
Set.neg_mem_Ico_iff
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a c d : α}
:
theorem
Set.inv_mem_Ioc_iff
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{a c d : α}
:
theorem
Set.neg_mem_Ioc_iff
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a c d : α}
:
theorem
Set.inv_mem_Ioo_iff
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{a c d : α}
:
theorem
Set.neg_mem_Ioo_iff
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a c d : α}
:
add_mem_Ixx_iff_left
theorem
Set.add_mem_Icc_iff_left
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.add_mem_Ico_iff_left
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.add_mem_Ioc_iff_left
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.add_mem_Ioo_iff_left
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
add_mem_Ixx_iff_right
theorem
Set.add_mem_Icc_iff_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.add_mem_Ico_iff_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.add_mem_Ioc_iff_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.add_mem_Ioo_iff_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
sub_mem_Ixx_iff_left
theorem
Set.sub_mem_Icc_iff_left
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.sub_mem_Ico_iff_left
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.sub_mem_Ioc_iff_left
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.sub_mem_Ioo_iff_left
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
sub_mem_Ixx_iff_right
theorem
Set.sub_mem_Icc_iff_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.sub_mem_Ico_iff_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.sub_mem_Ioc_iff_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.sub_mem_Ioo_iff_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b c d : α}
:
theorem
Set.mem_Icc_iff_abs_le
{R : Type u_2}
[AddCommGroup R]
[LinearOrder R]
[IsOrderedAddMonoid R]
{x y z : R}
:
sub_mem_Ixx_zero_right
and sub_mem_Ixx_zero_iff_right
; this specializes the previous
lemmas to the case of reflecting the interval.
theorem
Set.sub_mem_Icc_zero_iff_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b : α}
:
theorem
Set.sub_mem_Ico_zero_iff_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b : α}
:
theorem
Set.sub_mem_Ioc_zero_iff_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b : α}
:
theorem
Set.sub_mem_Ioo_zero_iff_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b : α}
:
theorem
Set.nonempty_Ico_sdiff
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
{x dx y dy : α}
(h : dy < dx)
(hx : 0 < dx)
:
If we remove a smaller interval from a larger, the result is nonempty
Lemmas about disjointness of translates of intervals #
theorem
Set.pairwise_disjoint_Ioc_mul_zpow
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(a b : α)
:
theorem
Set.pairwise_disjoint_Ioc_add_zsmul
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(a b : α)
:
theorem
Set.pairwise_disjoint_Ico_mul_zpow
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(a b : α)
:
theorem
Set.pairwise_disjoint_Ico_add_zsmul
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(a b : α)
:
theorem
Set.pairwise_disjoint_Ioo_mul_zpow
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(a b : α)
:
theorem
Set.pairwise_disjoint_Ioo_add_zsmul
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(a b : α)
:
theorem
Set.pairwise_disjoint_Ioc_zpow
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(b : α)
:
theorem
Set.pairwise_disjoint_Ioc_zsmul
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(b : α)
:
theorem
Set.pairwise_disjoint_Ico_zpow
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(b : α)
:
theorem
Set.pairwise_disjoint_Ico_zsmul
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(b : α)
:
theorem
Set.pairwise_disjoint_Ioo_zpow
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(b : α)
:
theorem
Set.pairwise_disjoint_Ioo_zsmul
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(b : α)
:
theorem
Set.pairwise_disjoint_Ioc_add_intCast
{α : Type u_1}
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
(a : α)
:
theorem
Set.pairwise_disjoint_Ico_add_intCast
{α : Type u_1}
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
(a : α)
:
theorem
Set.pairwise_disjoint_Ioo_add_intCast
{α : Type u_1}
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
(a : α)
:
theorem
Set.pairwise_disjoint_Ico_intCast
(α : Type u_1)
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
:
theorem
Set.pairwise_disjoint_Ioo_intCast
(α : Type u_1)
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
:
theorem
Set.pairwise_disjoint_Ioc_intCast
(α : Type u_1)
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
: