Monotonicity of the action by rational numbers #
instance
PosSMulStrictMono.nnrat_of_rat
{α : Type u_1}
[Preorder α]
[MulAction ℚ α]
[PosSMulStrictMono ℚ α]
:
@[simp]
theorem
abs_nnqsmul
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
[DistribMulAction ℚ≥0 α]
[PosSMulMono ℚ≥0 α]
(q : ℚ≥0)
(a : α)
:
@[simp]
theorem
abs_qsmul
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
[Module ℚ α]
[PosSMulMono ℚ α]
(q : ℚ)
(a : α)
:
instance
LinearOrderedSemifield.toPosSMulStrictMono_rat
{α : Type u_1}
[Semifield α]
[LinearOrder α]
[IsStrictOrderedRing α]
:
instance
LinearOrderedField.toPosSMulStrictMono_rat
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
: