Subrings of ordered rings #
We study subrings of ordered rings and prove their basic properties.
Main definitions and results #
Subring.orderedSubtype
: the inclusionS → R
of a subring as an ordered ring homomorphism- various ordered instances: a subring of an
OrderedRing
,OrderedCommRing
,LinearOrderedRing
,toLinearOrderedCommRing
is again an ordering ring
@[instance 75]
instance
SubringClass.toOrderedRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[OrderedRing R]
[SubringClass S R]
:
OrderedRing ↥s
A subring of an OrderedRing
is an OrderedRing
.
Equations
@[instance 75]
instance
SubringClass.toOrderedCommRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[OrderedCommRing R]
[SubringClass S R]
:
A subring of an OrderedCommRing
is an OrderedCommRing
.
Equations
@[instance 75]
instance
SubringClass.toLinearOrderedRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[LinearOrderedRing R]
[SubringClass S R]
:
A subring of a LinearOrderedRing
is a LinearOrderedRing
.
@[instance 75]
instance
SubringClass.toLinearOrderedCommRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[LinearOrderedCommRing R]
[SubringClass S R]
:
A subring of a LinearOrderedCommRing
is a LinearOrderedCommRing
.
A subring of an OrderedRing
is an OrderedRing
.
Equations
A subring of an OrderedCommRing
is an OrderedCommRing
.
Equations
A subring of a LinearOrderedRing
is a LinearOrderedRing
.
Equations
A subring of a LinearOrderedCommRing
is a LinearOrderedCommRing
.
Equations
The inclusion S → R
of a subring, as an ordered ring homomorphism.
Equations
- s.orderedSubtype = { toRingHom := s.subtype, monotone' := ⋯ }