Documentation

Mathlib.Algebra.Ring.Subsemiring.MulOpposite

Subsemiring of opposite semirings #

For every semiring R, we construct an equivalence between subsemirings of R and that of Rᵐᵒᵖ.

Pull a subsemiring back to an opposite subsemiring along MulOpposite.unop

Equations
  • S.op = { toSubmonoid := S.op, add_mem' := , zero_mem' := }
Instances For
    @[simp]
    @[simp]

    Pull an opposite subsemiring back to a subsemiring along MulOpposite.op

    Equations
    • S.unop = { toSubmonoid := S.unop, add_mem' := , zero_mem' := }
    Instances For
      @[simp]
      @[simp]
      theorem Subsemiring.unop_op {R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) :
      S.op.unop = S
      @[simp]

      Lattice results #

      theorem Subsemiring.op_le_iff {R : Type u_2} [NonAssocSemiring R] {S₁ : Subsemiring R} {S₂ : Subsemiring Rᵐᵒᵖ} :
      S₁.op S₂ S₁ S₂.unop
      theorem Subsemiring.le_op_iff {R : Type u_2} [NonAssocSemiring R] {S₁ : Subsemiring Rᵐᵒᵖ} {S₂ : Subsemiring R} :
      S₁ S₂.op S₁.unop S₂
      @[simp]
      theorem Subsemiring.op_le_op_iff {R : Type u_2} [NonAssocSemiring R] {S₁ S₂ : Subsemiring R} :
      S₁.op S₂.op S₁ S₂
      @[simp]
      theorem Subsemiring.unop_le_unop_iff {R : Type u_2} [NonAssocSemiring R] {S₁ S₂ : Subsemiring Rᵐᵒᵖ} :
      S₁.unop S₂.unop S₁ S₂

      A subsemiring S of R determines a subsemiring S.op of the opposite ring Rᵐᵒᵖ.

      Equations
      Instances For
        @[simp]
        @[simp]
        theorem Subsemiring.op_inj {R : Type u_2} [NonAssocSemiring R] {S T : Subsemiring R} :
        S.op = T.op S = T
        @[simp]
        theorem Subsemiring.unop_inj {R : Type u_2} [NonAssocSemiring R] {S T : Subsemiring Rᵐᵒᵖ} :
        S.unop = T.unop S = T
        @[simp]
        @[simp]
        theorem Subsemiring.op_eq_bot {R : Type u_2} [NonAssocSemiring R] {S : Subsemiring R} :
        S.op = S =
        @[simp]
        @[simp]
        theorem Subsemiring.op_eq_top {R : Type u_2} [NonAssocSemiring R] {S : Subsemiring R} :
        S.op = S =
        theorem Subsemiring.op_sup {R : Type u_2} [NonAssocSemiring R] (S₁ S₂ : Subsemiring R) :
        (S₁ S₂).op = S₁.op S₂.op
        theorem Subsemiring.unop_sup {R : Type u_2} [NonAssocSemiring R] (S₁ S₂ : Subsemiring Rᵐᵒᵖ) :
        (S₁ S₂).unop = S₁.unop S₂.unop
        theorem Subsemiring.op_inf {R : Type u_2} [NonAssocSemiring R] (S₁ S₂ : Subsemiring R) :
        (S₁ S₂).op = S₁.op S₂.op
        theorem Subsemiring.unop_inf {R : Type u_2} [NonAssocSemiring R] (S₁ S₂ : Subsemiring Rᵐᵒᵖ) :
        (S₁ S₂).unop = S₁.unop S₂.unop
        theorem Subsemiring.op_iSup {ι : Sort u_1} {R : Type u_2} [NonAssocSemiring R] (S : ιSubsemiring R) :
        (iSup S).op = ⨆ (i : ι), (S i).op
        theorem Subsemiring.unop_iSup {ι : Sort u_1} {R : Type u_2} [NonAssocSemiring R] (S : ιSubsemiring Rᵐᵒᵖ) :
        (iSup S).unop = ⨆ (i : ι), (S i).unop
        theorem Subsemiring.op_iInf {ι : Sort u_1} {R : Type u_2} [NonAssocSemiring R] (S : ιSubsemiring R) :
        (iInf S).op = ⨅ (i : ι), (S i).op
        theorem Subsemiring.unop_iInf {ι : Sort u_1} {R : Type u_2} [NonAssocSemiring R] (S : ιSubsemiring Rᵐᵒᵖ) :
        (iInf S).unop = ⨅ (i : ι), (S i).unop
        def Subsemiring.addEquivOp {R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) :
        S ≃+ S.op

        Bijection between a subsemiring S and its opposite.

        Equations
        Instances For
          @[simp]
          @[simp]

          Bijection between a subsemiring S and MulOpposite of its opposite.

          Equations
          Instances For
            @[simp]
            theorem Subsemiring.ringEquivOpMop_apply {R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) (a✝ : S) :

            Bijection between MulOpposite of a subsemiring S and its opposite.

            Equations
            Instances For