Documentation

Mathlib.AlgebraicGeometry.RationalMap

Rational maps between schemes #

Main definitions #

A partial map from X to Y (X.PartialMap Y) is a morphism into Y defined on a dense open subscheme of X.

  • domain : X.Opens

    The domain of definition of a partial map.

  • dense_domain : Dense self.domain
  • hom : self.domain Y

    The underlying morphism of a partial map.

@[reducible, inline]

A partial map is a S-map if the underlying morphism is.

Equations
noncomputable def AlgebraicGeometry.Scheme.PartialMap.restrict {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :

The restriction of a partial map to a smaller domain.

Equations
@[simp]
theorem AlgebraicGeometry.Scheme.PartialMap.restrict_hom {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
@[simp]
theorem AlgebraicGeometry.Scheme.PartialMap.restrict_domain {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
(f.restrict U hU hU').domain = U
@[simp]
theorem AlgebraicGeometry.Scheme.PartialMap.restrict_restrict {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) (V : X.Opens) (hV : Dense V) (hV' : V U) :
(f.restrict U hU hU').restrict V hV hV' = f.restrict V hV
theorem AlgebraicGeometry.Scheme.PartialMap.restrict_restrict_hom {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) (V : X.Opens) (hV : Dense V) (hV' : V U) :
((f.restrict U hU hU').restrict V hV hV').hom = (f.restrict V hV ).hom
instance AlgebraicGeometry.Scheme.PartialMap.instIsOverRestrict {X Y S : Scheme} [X.Over S] [Y.Over S] (f : X.PartialMap Y) [IsOver S f] (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
IsOver S (f.restrict U hU hU')

The composition of a partial map and a morphism on the right.

Equations
instance AlgebraicGeometry.Scheme.PartialMap.instIsOverCompHomOfIsOver {X Y Z S : Scheme} [X.Over S] [Y.Over S] [Z.Over S] (f : X.PartialMap Y) (g : Y Z) [IsOver S f] [Hom.IsOver g S] :
IsOver S (f.compHom g)

A scheme morphism as a partial map.

Equations
noncomputable def AlgebraicGeometry.Scheme.PartialMap.fromSpecStalkOfMem {X Y : Scheme} (f : X.PartialMap Y) {x : X.toPresheafedSpace} (hx : x f.domain) :

If x is in the domain of a partial map f, then f restricts to a map from Spec 𝒪_x.

Equations
@[reducible, inline]

A partial map restricts to a map from Spec K(X).

Equations
theorem AlgebraicGeometry.Scheme.PartialMap.fromSpecStalkOfMem_restrict {X Y : Scheme} (f : X.PartialMap Y) {U : X.Opens} (hU : Dense U) (hU' : U f.domain) {x : X.toPresheafedSpace} (hx : x U) :

Given S-schemes X and Y such that Y is locally of finite type and X is irreducible germ-injective at x (e.g. when X is integral), any S-morphism Spec 𝒪ₓ ⟶ Y spreads out to a partial map from X to Y.

Equations
noncomputable def AlgebraicGeometry.Scheme.PartialMap.equiv {X Y : Scheme} (f g : X.PartialMap Y) :

Two partial maps are equivalent if they are equal on a dense open subscheme.

Equations
theorem AlgebraicGeometry.Scheme.PartialMap.restrict_equiv {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
(f.restrict U hU hU').equiv f
theorem AlgebraicGeometry.Scheme.PartialMap.equiv_iff_of_isSeparated_of_le {X Y S : Scheme} [X.Over S] [Y.Over S] [IsReduced X] [IsSeparated (Y S)] {f g : X.PartialMap Y} [IsOver S f] [IsOver S g] {W : X.Opens} (hW : Dense W) (hWl : W f.domain) (hWr : W g.domain) :
f.equiv g (f.restrict W hW hWl).hom = (g.restrict W hW hWr).hom

Two partial maps from reduced schemes to separated schemes are equivalent if and only if they are equal on any open dense subset.

theorem AlgebraicGeometry.Scheme.PartialMap.equiv_iff_of_isSeparated {X Y S : Scheme} [X.Over S] [Y.Over S] [IsReduced X] [IsSeparated (Y S)] {f g : X.PartialMap Y} [IsOver S f] [IsOver S g] :
f.equiv g (f.restrict (f.domain g.domain) ).hom = (g.restrict (f.domain g.domain) ).hom

Two partial maps from reduced schemes to separated schemes are equivalent if and only if they are equal on the intersection of the domains.

Two partial maps from reduced schemes to separated schemes with the same domain are equivalent if and only if they are equal.

A partial map from a reduced scheme to a separated scheme is equivalent to a morphism if and only if it is equal to the restriction of the morphism.

A rational map from X to Y (X ⤏ Y) is an equivalence class of partial maps, where two partial maps are equivalent if they are equal on a dense open subscheme.

Equations

A partial map as a rational map.

Equations
@[reducible, inline]

A scheme morphism as a rational map.

Equations

A rational map is a S-map if some partial map in the equivalence class is a S-map.

Instances
    @[simp]

    The composition of a rational map and a morphism on the right.

    Equations
    theorem AlgebraicGeometry.Scheme.PartialMap.exists_restrict_isOver {X Y : Scheme} (S : Scheme) [X.Over S] [Y.Over S] (f : X.PartialMap Y) [RationalMap.IsOver S f.toRationalMap] :
    ∃ (U : X.Opens) (hU : Dense U) (hU' : U f.domain), IsOver S (f.restrict U hU hU')

    Given S-schemes X and Y such that Y is locally of finite type and X is integral, any S-morphism Spec K(X) ⟶ Y spreads out to a rational map from X to Y.

    Equations

    Given S-schemes X and Y such that Y is locally of finite type and X is integral, S-morphisms Spec K(X) ⟶ Y correspond bijectively to S-rational maps from X to Y.

    Equations
    • One or more equations did not get rendered due to their size.

    Given S-schemes X and Y such that Y is locally of finite type and X is integral, S-morphisms Spec K(X) ⟶ Y correspond bijectively to S-rational maps from X to Y.

    Equations
    • One or more equations did not get rendered due to their size.

    The domain of definition of a rational map.

    Equations

    The open cover of the domain of f : X ⤏ Y, consisting of all the domains of the partial maps in the equivalence class.

    Equations
    • One or more equations did not get rendered due to their size.

    If f : X ⤏ Y is a rational map from a reduced scheme to a separated scheme, then f can be represented as a partial map on its domain of definition.

    Equations
    • One or more equations did not get rendered due to their size.