Documentation

Mathlib.AlgebraicTopology.SimplicialObject.Split

Split simplicial objects #

In this file, we introduce the notion of split simplicial object. If C is a category that has finite coproducts, a splitting s : Splitting X of a simplicial object X in C consists of the datum of a sequence of objects s.N : ℕ → C (which we shall refer to as "nondegenerate simplices") and a sequence of morphisms s.ι n : s.N n → X _⦋n⦌ that have the property that a certain canonical map identifies X _⦋n⦌ with the coproduct of objects s.N i indexed by all possible epimorphisms ⦋n⦌ ⟶ ⦋i⦌ in SimplexCategory. (We do not assume that the morphisms s.ι n are monomorphisms: in the most common categories, this would be a consequence of the axioms.)

Simplicial objects equipped with a splitting form a category SimplicialObject.Split C.

References #

The index set which appears in the definition of split simplicial objects.

Equations
Instances For

    The element in Splitting.IndexSet Δ attached to an epimorphism f : Δ ⟶ Δ'.

    Equations
    Instances For

      The epimorphism in SimplexCategory associated to A : Splitting.IndexSet Δ

      Equations
      Instances For
        theorem SimplicialObject.Splitting.IndexSet.ext' {Δ : SimplexCategoryᵒᵖ} (A : IndexSet Δ) :
        A = A.fst, A.e,
        theorem SimplicialObject.Splitting.IndexSet.ext {Δ : SimplexCategoryᵒᵖ} (A₁ A₂ : IndexSet Δ) (h₁ : A₁.fst = A₂.fst) (h₂ : CategoryTheory.CategoryStruct.comp A₁.e (CategoryTheory.eqToHom ) = A₂.e) :
        A₁ = A₂
        Equations
        • One or more equations did not get rendered due to their size.

        The distinguished element in Splitting.IndexSet Δ which corresponds to the identity of Δ.

        Equations
        Instances For

          The condition that an element Splitting.IndexSet Δ is the distinguished element Splitting.IndexSet.Id Δ.

          Equations
          Instances For

            Given A : IndexSet Δ₁, if p.unop : unop Δ₂ ⟶ unop Δ₁ is an epi, this is the obvious element in A : IndexSet Δ₂ associated to the composition of epimorphisms p.unop ≫ A.e.

            Equations
            Instances For
              @[simp]

              When A : IndexSet Δ and θ : Δ → Δ' is a morphism in SimplexCategoryᵒᵖ, an element in IndexSet Δ' can be defined by using the epi-mono factorisation of θ.unop ≫ A.e.

              Equations
              Instances For
                def SimplicialObject.Splitting.summand {C : Type u_1} (N : C) (Δ : SimplexCategoryᵒᵖ) (A : IndexSet Δ) :
                C

                Given a sequences of objects N : ℕ → C in a category C, this is a family of objects indexed by the elements A : Splitting.IndexSet Δ. The Δ-simplices of a split simplicial objects shall identify to the coproduct of objects in such a family.

                Equations
                Instances For

                  The cofan for summand N Δ induced by morphisms N n ⟶ X _⦋n⦌ for all n : ℕ.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    A splitting of a simplicial object X consists of the datum of a sequence of objects N, a sequence of morphisms ι : N n ⟶ X _⦋n⦌ such that for all Δ : SimplexCategoryᵒᵖ, the canonical map Splitting.map X ι Δ is an isomorphism.

                    Instances For

                      As it is stated in Splitting.hom_ext, a morphism f : X ⟶ Y from a split simplicial object to any simplicial object is determined by its restrictions s.φ f n : s.N n ⟶ Y _⦋n⦌ to the distinguished summands in each degree n.

                      Equations
                      Instances For
                        theorem SimplicialObject.Splitting.hom_ext {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : CategoryTheory.SimplicialObject C} (s : Splitting X) (f g : X Y) (h : ∀ (n : ), s.φ f n = s.φ g n) :
                        f = g

                        The map X.obj Δ ⟶ Z obtained by providing a family of morphisms on all the terms of decomposition given by a splitting s : Splitting X

                        Equations
                        Instances For

                          A simplicial object that is isomorphic to a split simplicial object is split.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem SimplicialObject.Splitting.ofIso_N {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : CategoryTheory.SimplicialObject C} (s : Splitting X) (e : X Y) (a✝ : ) :
                            (s.ofIso e).N a✝ = s.N a✝

                            The category SimplicialObject.Split C is the category of simplicial objects in C equipped with a splitting, and morphisms are morphisms of simplicial objects which are compatible with the splittings.

                            Instances For
                              theorem SimplicialObject.Split.ext {C : Type u_1} {inst✝ : CategoryTheory.Category.{u_2, u_1} C} {x y : Split C} (X : x.X = y.X) (s : HEq x.s y.s) :
                              x = y

                              The object in SimplicialObject.Split C attached to a splitting s : Splitting X of a simplicial object X.

                              Equations
                              Instances For
                                structure SimplicialObject.Split.Hom {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (S₁ S₂ : Split C) :
                                Type u_2

                                Morphisms in SimplicialObject.Split C are morphisms of simplicial objects that are compatible with the splittings.

                                Instances For
                                  theorem SimplicialObject.Split.Hom.ext {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ : Split C} (Φ₁ Φ₂ : S₁.Hom S₂) (h : ∀ (n : ), Φ₁.f n = Φ₂.f n) :
                                  Φ₁ = Φ₂
                                  theorem SimplicialObject.Split.hom_ext {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ : Split C} (Φ₁ Φ₂ : S₁ S₂) (h : ∀ (n : ), Φ₁.f n = Φ₂.f n) :
                                  Φ₁ = Φ₂
                                  theorem SimplicialObject.Split.congr_F {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ : Split C} {Φ₁ Φ₂ : S₁ S₂} (h : Φ₁ = Φ₂) :
                                  Φ₁.f = Φ₂.f
                                  theorem SimplicialObject.Split.congr_f {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ : Split C} {Φ₁ Φ₂ : S₁ S₂} (h : Φ₁ = Φ₂) (n : ) :
                                  Φ₁.f n = Φ₂.f n
                                  @[simp]
                                  theorem SimplicialObject.Split.comp_F {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ S₃ : Split C} (Φ₁₂ : S₁ S₂) (Φ₂₃ : S₂ S₃) :
                                  @[simp]
                                  theorem SimplicialObject.Split.comp_f {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ S₃ : Split C} (Φ₁₂ : S₁ S₂) (Φ₂₃ : S₂ S₃) (n : ) :
                                  (CategoryTheory.CategoryStruct.comp Φ₁₂ Φ₂₃).f n = CategoryTheory.CategoryStruct.comp (Φ₁₂.f n) (Φ₂₃.f n)

                                  The functor SimplicialObject.Split C ⥤ SimplicialObject C which forgets the splitting.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem SimplicialObject.Split.forget_map (C : Type u_1) [CategoryTheory.Category.{u_2, u_1} C] {X✝ Y✝ : Split C} (Φ : X✝ Y✝) :
                                    (forget C).map Φ = Φ.F

                                    The functor SimplicialObject.Split C ⥤ C which sends a simplicial object equipped with a splitting to its nondegenerate n-simplices.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem SimplicialObject.Split.evalN_map (C : Type u_1) [CategoryTheory.Category.{u_2, u_1} C] (n : ) {X✝ Y✝ : Split C} (Φ : X✝ Y✝) :
                                      (evalN C n).map Φ = Φ.f n
                                      @[simp]

                                      The inclusion of each summand in the coproduct decomposition of simplices in split simplicial objects is a natural transformation of functors SimplicialObject.Split C ⥤ C

                                      Equations
                                      Instances For