Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Horn

Horns #

This file introduce horns Λ[n, i].

def SSet.horn (n : ) (i : Fin (n + 1)) :

horn n i (or Λ[n, i]) is the i-th horn of the n-th standard simplex, where i : n. It consists of all m-simplices α of Δ[n] for which the union of {i} and the range of α is not all of n (when viewing α as monotone function m → n).

Equations
  • One or more equations did not get rendered due to their size.

The i-th horn Λ[n, i] of the standard n-simplex

Equations
  • One or more equations did not get rendered due to their size.

Pretty printer defined by notation3 command.

Equations
  • One or more equations did not get rendered due to their size.

The inclusion of the i-th horn of the n-th standard simplex into that standard simplex.

Equations
  • One or more equations did not get rendered due to their size.
def SSet.horn.const (n : ) (i k : Fin (n + 3)) (m : SimplexCategoryᵒᵖ) :
(horn (n + 2) i).obj m

The (degenerate) subsimplex of Λ[n+2, i] concentrated in vertex k.

Equations
@[simp]
theorem SSet.horn.const_coe (n : ) (i k : Fin (n + 3)) (m : SimplexCategoryᵒᵖ) :
(const n i k m) = stdSimplex.const (n + 2) k m
def SSet.horn.edge (n : ) (i a b : Fin (n + 1)) (hab : a b) (H : {i, a, b}.card n) :

The edge of Λ[n, i] with endpoints a and b.

This edge only exists if {i, a, b} has cardinality less than n.

Equations
@[simp]
theorem SSet.horn.edge_coe (n : ) (i a b : Fin (n + 1)) (hab : a b) (H : {i, a, b}.card n) :
(edge n i a b hab H) = stdSimplex.edge n a b hab
def SSet.horn.edge₃ (n : ) (i a b : Fin (n + 1)) (hab : a b) (H : 3 n) :

Alternative constructor for the edge of Λ[n, i] with endpoints a and b, assuming 3 ≤ n.

Equations
@[simp]
theorem SSet.horn.edge₃_coe_down (n : ) (i a b : Fin (n + 1)) (hab : a b) (H : 3 n) :
(↑(edge₃ n i a b hab H)).down = SimplexCategory.Hom.mk { toFun := ![a, b], monotone' := }
def SSet.horn.primitiveEdge {n : } {i : Fin (n + 1)} (h₀ : 0 < i) (hₙ : i < Fin.last n) (j : Fin n) :

The edge of Λ[n, i] with endpoints j and j+1.

This constructor assumes 0 < i < n, which is the type of horn that occurs in the horn-filling condition of quasicategories.

Equations
@[simp]
theorem SSet.horn.primitiveEdge_coe_down {n : } {i : Fin (n + 1)} (h₀ : 0 < i) (hₙ : i < Fin.last n) (j : Fin n) :
(↑(primitiveEdge h₀ hₙ j)).down = SimplexCategory.Hom.mk { toFun := ![j.castSucc, j.succ], monotone' := }
def SSet.horn.primitiveTriangle {n : } (i : Fin (n + 4)) (h₀ : 0 < i) (hₙ : i < Fin.last (n + 3)) (k : ) (h : k < n + 2) :

The triangle in the standard simplex with vertices k, k+1, and k+2.

This constructor assumes 0 < i < n, which is the type of horn that occurs in the horn-filling condition of quasicategories.

Equations
@[simp]
theorem SSet.horn.primitiveTriangle_coe {n : } (i : Fin (n + 4)) (h₀ : 0 < i) (hₙ : i < Fin.last (n + 3)) (k : ) (h : k < n + 2) :
(primitiveTriangle i h₀ hₙ k h) = stdSimplex.triangle k, k + 1, k + 2,
def SSet.horn.face {n : } (i j : Fin (n + 2)) (h : j i) :

The jth subface of the i-th horn.

Equations
@[simp]
theorem SSet.horn.face_coe {n : } (i j : Fin (n + 2)) (h : j i) :
theorem SSet.horn.hom_ext {n : } {i : Fin (n + 2)} {S : SSet} (σ₁ σ₂ : horn (n + 1) i S) (h : ∀ (j : Fin (n + 2)) (h : j i), σ₁.app (Opposite.op (SimplexCategory.mk n)) (face i j h) = σ₂.app (Opposite.op (SimplexCategory.mk n)) (face i j h)) :
σ₁ = σ₂

Two morphisms from a horn are equal if they are equal on all suitable faces.