Higher differentiability of usual operations #
We prove that the usual operations (addition, multiplication, difference, composition, and
so on) preserve C^n
functions.
Notations #
We use the notation E [×n]→L[𝕜] F
for the space of continuous multilinear maps on E^n
with
values in F
. This is the space in which the n
-th derivative of a function from E
to F
lives.
In this file, we denote (⊤ : ℕ∞) : WithTop ℕ∞
with ∞
and ⊤ : WithTop ℕ∞
with ω
.
Tags #
derivative, differentiability, higher derivative, C^n
, multilinear, Taylor series, formal series
Smoothness of functions f : E → Π i, F' i
#
Sum of two functions #
The sum of two C^n
functions within a set at a point is C^n
within this set
at this point.
The sum of two C^n
functions at a point is C^n
at this point.
The sum of two C^n
functions is C^n
.
The sum of two C^n
functions on a domain is C^n
.
The iterated derivative of the sum of two functions is the sum of the iterated derivatives.
See also iteratedFDerivWithin_add_apply'
, which uses the spelling (fun x ↦ f x + g x)
instead of f + g
.
The iterated derivative of the sum of two functions is the sum of the iterated derivatives.
This is the same as iteratedFDerivWithin_add_apply
, but using the spelling (fun x ↦ f x + g x)
instead of f + g
, which can be handy for some rewrites.
TODO: use one form consistently.
Negative #
The negative of a C^n
function within a domain at a point is C^n
within this domain at
this point.
The negative of a C^n
function at a point is C^n
at this point.
The negative of a C^n
function is C^n
.
The negative of a C^n
function on a domain is C^n
.
Subtraction #
The difference of two C^n
functions within a set at a point is C^n
within this set
at this point.
The difference of two C^n
functions at a point is C^n
at this point.
The difference of two C^n
functions on a domain is C^n
.
The difference of two C^n
functions is C^n
.
Sum of finitely many functions #
Product of two functions #
The product of two C^n
functions within a set at a point is C^n
within this set
at this point.
The product of two C^n
functions at a point is C^n
at this point.
The product of two C^n
functions on a domain is C^n
.
The product of two C^n
functions is C^n
.
Scalar multiplication #
The scalar multiplication of two C^n
functions within a set at a point is C^n
within this
set at this point.
The scalar multiplication of two C^n
functions at a point is C^n
at this point.
The scalar multiplication of two C^n
functions is C^n
.
The scalar multiplication of two C^n
functions on a domain is C^n
.
Constant scalar multiplication #
Porting note (https://github.com/leanprover-community/mathlib4/issues/11215): TODO: generalize results in this section.
- It should be possible to assume
[Monoid R] [DistribMulAction R F] [SMulCommClass 𝕜 R F]
. - If
c
is a unit (orR
is a group), then one can dropContDiff*
assumptions in some lemmas.
The scalar multiplication of a constant and a C^n
function within a set at a point is C^n
within this set at this point.
The scalar multiplication of a constant and a C^n
function at a point is C^n
at this
point.
The scalar multiplication of a constant and a C^n
function is C^n
.
The scalar multiplication of a constant and a C^n
on a domain is C^n
.
Cartesian product of two functions #
The product map of two C^n
functions within a set at a point is C^n
within the product set at the product point.
The product map of two C^n
functions on a set is C^n
on the product set.
The product map of two C^n
functions within a set at a point is C^n
within the product set at the product point.
The product map of two C^n
functions within a set at a point is C^n
within the product set at the product point.
The product map of two C^n
functions is C^n
.
Inversion in a complete normed algebra (or more generally with summable geometric series) #
In a complete normed algebra, the operation of inversion is C^n
, for all n
, at each
invertible element, as it is analytic.
Inversion of continuous linear maps between Banach spaces #
At a continuous linear equivalence e : E ≃L[𝕜] F
between Banach spaces, the operation of
inversion is C^n
, for all n
.
At an invertible map e : M →L[R] M₂
between Banach spaces, the operation of
inversion is C^n
, for all n
.
If f
is a local homeomorphism and the point a
is in its target,
and if f
is n
times continuously differentiable at f.symm a
,
and if the derivative at f.symm a
is a continuous linear equivalence,
then f.symm
is n
times continuously differentiable at the point a
.
This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function.
If f
is an n
times continuously differentiable homeomorphism,
and if the derivative of f
at each point is a continuous linear equivalence,
then f.symm
is n
times continuously differentiable.
This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function.
Let f
be a local homeomorphism of a nontrivially normed field, let a
be a point in its
target. if f
is n
times continuously differentiable at f.symm a
, and if the derivative at
f.symm a
is nonzero, then f.symm
is n
times continuously differentiable at the point a
.
This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function.
Let f
be an n
times continuously differentiable homeomorphism of a nontrivially normed
field. Suppose that the derivative of f
is never equal to zero. Then f.symm
is n
times
continuously differentiable.
This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function.
Restrict a partial homeomorphism to the subsets of the source and target
that consist of points x ∈ f.source
, y = f x ∈ f.target
such that f
is C^n
at x
and f.symm
is C^n
at y
.
Note that n
is a natural number or ω
, but not ∞
,
because the set of points of C^∞
-smoothness of f
is not guaranteed to be open.
Equations
Instances For
Restricting from ℂ
to ℝ
, or generally from 𝕜'
to 𝕜
#
If a function is n
times continuously differentiable over ℂ
, then it is n
times continuously
differentiable over ℝ
. In this paragraph, we give variants of this statement, in the general
situation where ℂ
and ℝ
are replaced respectively by 𝕜'
and 𝕜
where 𝕜'
is a normed algebra
over 𝕜
.