Documentation

Mathlib.CategoryTheory.Monad.Adjunction

Adjunctions and (co)monads #

We develop the basic relationship between adjunctions and (co)monads.

Given an adjunction h : LR, we have h.toMonad : Monad C and h.toComonad : Comonad D. We then have Monad.comparison (h : L ⊣ R) : D ⥤ h.toMonad.algebra sending Y : D to the Eilenberg-Moore algebra for LR with underlying object R.obj X, and dually Comonad.comparison.

We say R : D ⥤ C is MonadicRightAdjoint, if it is a right adjoint and its Monad.comparison is an equivalence of categories. (Similarly for ComonadicLeftAdjoint.)

Finally we prove that reflective functors are MonadicRightAdjoint and coreflective functors are ComonadicLeftAdjoint.

def CategoryTheory.Adjunction.toMonad {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) :

For a pair of functors L : C ⥤ D, R : D ⥤ C, an adjunction h : LR induces a monad on the category C.

Equations
@[simp]
theorem CategoryTheory.Adjunction.toMonad_coe {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) :
@[simp]
@[simp]
theorem CategoryTheory.Adjunction.toMonad_η {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) :
def CategoryTheory.Adjunction.toComonad {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) :

For a pair of functors L : C ⥤ D, R : D ⥤ C, an adjunction h : LR induces a comonad on the category D.

Equations
@[simp]
theorem CategoryTheory.Adjunction.toComonad_coe {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) :
@[simp]
theorem CategoryTheory.Adjunction.toComonad_ε {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) :
@[simp]

The monad induced by the Eilenberg-Moore adjunction is the original monad.

Equations

The comonad induced by the Eilenberg-Moore adjunction is the original comonad.

Equations
def CategoryTheory.Adjunction.unitAsIsoOfIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (adj : L R) (i : L.comp R Functor.id C) :

Given an adjunction LR, if LR is abstractly isomorphic to the identity functor, then the unit is an isomorphism.

Equations
theorem CategoryTheory.Adjunction.isIso_unit_of_iso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (adj : L R) (i : L.comp R Functor.id C) :
noncomputable def CategoryTheory.Adjunction.fullyFaithfulLOfCompIsoId {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (adj : L R) (i : L.comp R Functor.id C) :

Given an adjunction LR, if LR is isomorphic to the identity functor, then L is fully faithful.

Equations
def CategoryTheory.Adjunction.counitAsIsoOfIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (adj : L R) (j : R.comp L Functor.id D) :

Given an adjunction LR, if RL is abstractly isomorphic to the identity functor, then the counit is an isomorphism.

Equations
theorem CategoryTheory.Adjunction.isIso_counit_of_iso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (adj : L R) (j : R.comp L Functor.id D) :
noncomputable def CategoryTheory.Adjunction.fullyFaithfulROfCompIsoId {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (adj : L R) (j : R.comp L Functor.id D) :

Given an adjunction LR, if RL is isomorphic to the identity functor, then R is fully faithful.

Equations

Given any adjunction LR, there is a comparison functor CategoryTheory.Monad.comparison R sending objects Y : D to Eilenberg-Moore algebras for LR with underlying object R.obj X.

We later show that this is full when R is full, faithful when R is faithful, and essentially surjective when R is reflective.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Monad.comparison_obj_a {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) (X : D) :
((comparison h).obj X).a = R.map (h.counit.app X)
@[simp]
theorem CategoryTheory.Monad.comparison_obj_A {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) (X : D) :
((comparison h).obj X).A = R.obj X
@[simp]
theorem CategoryTheory.Monad.comparison_map_f {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) {X✝ Y✝ : D} (f : X✝ Y✝) :
((comparison h).map f).f = R.map f

The underlying object of (Monad.comparison R).obj X is just R.obj X.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
@[simp]
theorem CategoryTheory.Monad.comparisonForget_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) (x✝ : D) :

Given any adjunction LR, there is a comparison functor CategoryTheory.Comonad.comparison L sending objects X : C to Eilenberg-Moore coalgebras for LR with underlying object L.obj X.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Comonad.comparison_obj_A {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) (X : C) :
((comparison h).obj X).A = L.obj X
@[simp]
theorem CategoryTheory.Comonad.comparison_obj_a {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) (X : C) :
((comparison h).obj X).a = L.map (h.unit.app X)
@[simp]
theorem CategoryTheory.Comonad.comparison_map_f {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) {X✝ Y✝ : C} (f : X✝ Y✝) :
((comparison h).map f).f = L.map f

The underlying object of (Comonad.comparison L).obj X is just L.obj X.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Comonad.comparisonForget_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {L : Functor C D} {R : Functor D C} (h : L R) (x✝ : C) :
@[simp]
class CategoryTheory.MonadicRightAdjoint {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (R : Functor D C) :
Type (max (max (max u₁ u₂) v₁) v₂)

A right adjoint functor R : D ⥤ C is monadic if the comparison functor Monad.comparison R from D to the category of Eilenberg-Moore algebras for the adjunction is an equivalence.

Instances

    The left adjoint functor to R given by [MonadicRightAdjoint R].

    Equations
    class CategoryTheory.ComonadicLeftAdjoint {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (L : Functor C D) :
    Type (max (max (max u₁ u₂) v₁) v₂)

    A left adjoint functor L : C ⥤ D is comonadic if the comparison functor Comonad.comparison L from C to the category of Eilenberg-Moore algebras for the adjunction is an equivalence.

    Instances

      The right adjoint functor to L given by [ComonadicLeftAdjoint L].

      Equations
      @[instance 100]

      Any reflective inclusion has a monadic right adjoint. cf Prop 5.3.3 of [Riehl][riehl2017]

      Equations
      @[instance 100]

      Any coreflective inclusion has a comonadic left adjoint. cf Dual statement of Prop 5.3.3 of [Riehl][riehl2017]

      Equations