The category of module objects over a monoid object. #
A module object for a monoid object, all internal to some monoidal category.
- X : C
The underlying object in the ambient monoidal category
The action morphism of the module object
- one_smul : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight A.one self.X) self.smul = (CategoryTheory.MonoidalCategoryStruct.leftUnitor self.X).hom
- assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight A.mul self.X) self.smul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator A.X A.X self.X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft A.X self.smul) self.smul)
Instances For
A morphism of module objects.
The underlying morphism
- smul_hom : CategoryTheory.CategoryStruct.comp M.smul self.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft A.X self.hom) N.smul
Instances For
The identity morphism on a module object.
Instances For
Equations
- M.homInhabited = { default := M.id }
Composition of module object morphisms.
Instances For
A monoid object as a module over itself.
Instances For
Equations
- Mod_.instInhabited A = { default := Mod_.regular A }
The forgetful functor from module objects to the ambient category.
Equations
Instances For
A morphism of monoid objects induces a "restriction" or "comap" functor between the categories of module objects.
Equations
- One or more equations did not get rendered due to their size.
Instances For
An action of a monoid object M
on an object X
is the data of a map smul : M ⊗ X ⟶ X
that
satisfies unitality and associativity with multiplication.
See MulAction
for the non-categorical version.
The action map
- one_smul : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight Mon_Class.one X) smul = (CategoryTheory.MonoidalCategoryStruct.leftUnitor X).hom
The identity acts trivially.
- mul_smul : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight Mon_Class.mul X) smul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator M M X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft M smul) smul)
The action map is compatible with multiplication.
Instances
The action map
Equations
- Mon_Class.termγ = Lean.ParserDescr.node `Mon_Class.termγ 1024 (Lean.ParserDescr.symbol "γ")
Instances For
The action map
Equations
- One or more equations did not get rendered due to their size.
Instances For
The action of a monoid object on itself.
Equations
- Mod_Class.regular M = { smul := Mon_Class.mul, one_smul := ⋯, mul_smul := ⋯ }
Instances For
Equations
- Mod_Class.instXX M = { smul := M.smul, one_smul := ⋯, mul_smul := ⋯ }
Construct an object of Mod_ (Mon_.mk' M)
from an object X : C
and a
Mod_Class M X
instance.
Equations
- Mod_.mk' M X = { X := X, smul := Mod_Class.smul, one_smul := ⋯, assoc := ⋯ }