Documentation

Mathlib.CategoryTheory.ObjectProperty.Basic

Properties of objects in a category #

Given a category C, we introduce an abbreviation ObjectProperty C for predicates C → Prop.

TODO #

@[reducible, inline]

A property of objects in a category C is a predicate C → Prop.

Equations
Instances For
    theorem CategoryTheory.ObjectProperty.le_def {C : Type u} [Category.{v, u} C] {P Q : ObjectProperty C} :
    P Q ∀ (X : C), P XQ X

    The inverse image of a property of objects by a functor.

    Equations
    Instances For
      @[simp]

      The essential image of a property of objects by a functor.

      Equations
      Instances For
        theorem CategoryTheory.ObjectProperty.prop_map_iff {C : Type u} {D : Type u'} [Category.{v, u} C] [Category.{v', u'} D] (P : ObjectProperty C) (F : Functor C D) (Y : D) :
        P.map F Y (X : C), P X Nonempty (F.obj X Y)
        theorem CategoryTheory.ObjectProperty.prop_map_obj {C : Type u} {D : Type u'} [Category.{v, u} C] [Category.{v', u'} D] (P : ObjectProperty C) (F : Functor C D) {X : C} (hX : P X) :
        P.map F (F.obj X)

        The strict image of a property of objects by a functor.

        Instances For
          theorem CategoryTheory.ObjectProperty.strictMap_iff {C : Type u} {D : Type u'} [Category.{v, u} C] [Category.{v', u'} D] (P : ObjectProperty C) (F : Functor C D) (Y : D) :
          P.strictMap F Y (X : C), P X F.obj X = Y
          theorem CategoryTheory.ObjectProperty.strictMap_obj {C : Type u} {D : Type u'} [Category.{v, u} C] [Category.{v', u'} D] (P : ObjectProperty C) (F : Functor C D) {X : C} (hX : P X) :
          P.strictMap F (F.obj X)

          The typeclass associated to P : ObjectProperty C.

          • prop : P X
          Instances
            theorem CategoryTheory.ObjectProperty.is_of_prop {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) {X : C} (hX : P X) :
            P.Is X
            inductive CategoryTheory.ObjectProperty.ofObj {C : Type u} [Category.{v, u} C] {ι : Type u'} (X : ιC) :

            The property of objects that is satisfied by the X i for a family of objects X : ι : C.

            Instances For
              @[simp]
              theorem CategoryTheory.ObjectProperty.ofObj_apply {C : Type u} [Category.{v, u} C] {ι : Type u'} (X : ιC) (i : ι) :
              ofObj X (X i)
              theorem CategoryTheory.ObjectProperty.ofObj_iff {C : Type u} [Category.{v, u} C] {ι : Type u'} (X : ιC) (Y : C) :
              ofObj X Y (i : ι), X i = Y
              theorem CategoryTheory.ObjectProperty.ofObj_le_iff {C : Type u} [Category.{v, u} C] {ι : Type u'} (X : ιC) (P : ObjectProperty C) :
              ofObj X P ∀ (i : ι), P (X i)
              @[simp]
              theorem CategoryTheory.ObjectProperty.strictMap_ofObj {C : Type u} {D : Type u'} [Category.{v, u} C] [Category.{v', u'} D] {ι : Type u'} (X : ιC) (F : Functor C D) :
              @[reducible, inline]

              The property of objects in a category that is satisfied by a single object X : C.

              Equations
              Instances For

                The property of objects in a category that is satisfied by X : C and Y : C.

                Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.ObjectProperty.pair_iff {C : Type u} [Category.{v, u} C] (X Y Z : C) :
                  pair X Y Z X = Z Y = Z