Properties of morphisms in a path category. #
We provide a formulation of induction principles for morphisms in a path category in terms of
MorphismProperty
. This file is separate from CategoryTheory.PathCategory.Basic
in order to
reduce transitive imports.
theorem
CategoryTheory.Paths.morphismProperty_eq_top
(V : Type u₁)
[Quiver V]
(P : MorphismProperty (Paths V))
(id : ∀ {v : V}, P (CategoryStruct.id ((of V).obj v)))
(comp : ∀ {u v w : V} (p : (of V).obj u ⟶ (of V).obj v) (q : v ⟶ w), P p → P (CategoryStruct.comp p ((of V).map q)))
:
A reformulation of CategoryTheory.Paths.induction
in terms of MorphismProperty
.
theorem
CategoryTheory.Paths.morphismProperty_eq_top'
(V : Type u₁)
[Quiver V]
(P : MorphismProperty (Paths V))
(id : ∀ {v : V}, P (CategoryStruct.id ((of V).obj v)))
(comp : ∀ {u v w : V} (p : u ⟶ v) (q : (of V).obj v ⟶ (of V).obj w), P q → P (CategoryStruct.comp ((of V).map p) q))
:
A reformulation of CategoryTheory.Paths.induction'
in terms of MorphismProperty
.
theorem
CategoryTheory.Paths.morphismProperty_eq_top_of_isMultiplicative
(V : Type u₁)
[Quiver V]
(P : MorphismProperty (Paths V))
[P.IsMultiplicative]
(hP : ∀ {u v : V} (p : u ⟶ v), P ((of V).map p))
:
def
CategoryTheory.Paths.liftNatTrans
{C : Type u_1}
[Category.{u_2, u_1} C]
{V : Type u₁}
[Quiver V]
{F G : Functor (Paths V) C}
(α_app : (v : V) → F.obj v ⟶ G.obj v)
(α_nat :
∀ {X Y : V} (f : X ⟶ Y),
CategoryStruct.comp (F.map f.toPath) (α_app Y) = CategoryStruct.comp (α_app X) (G.map f.toPath))
:
A natural transformation between F G : Paths V ⥤ C
is defined by its components and
its unary naturality squares.
Equations
- CategoryTheory.Paths.liftNatTrans α_app α_nat = { app := α_app, naturality := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Paths.liftNatTrans_app
{C : Type u_1}
[Category.{u_2, u_1} C]
{V : Type u₁}
[Quiver V]
{F G : Functor (Paths V) C}
(α_app : (v : V) → F.obj v ⟶ G.obj v)
(α_nat :
∀ {X Y : V} (f : X ⟶ Y),
CategoryStruct.comp (F.map f.toPath) (α_app Y) = CategoryStruct.comp (α_app X) (G.map f.toPath))
(v : V)
:
def
CategoryTheory.Paths.liftNatIso
{V : Type u₁}
[Quiver V]
{C : Type u_2}
[Category.{u_3, u_2} C]
{F G : Functor (Paths V) C}
(α_app : (v : V) → F.obj v ≅ G.obj v)
(α_nat :
∀ {X Y : V} (f : X ⟶ Y),
CategoryStruct.comp (F.map f.toPath) (α_app Y).hom = CategoryStruct.comp (α_app X).hom (G.map f.toPath))
:
A natural isomorphism between F G : Paths V ⥤ C
is defined by its components and
its unary naturality squares.
Equations
- CategoryTheory.Paths.liftNatIso α_app α_nat = CategoryTheory.NatIso.ofComponents α_app ⋯
Instances For
@[simp]
theorem
CategoryTheory.Paths.liftNatIso_inv_app
{V : Type u₁}
[Quiver V]
{C : Type u_2}
[Category.{u_3, u_2} C]
{F G : Functor (Paths V) C}
(α_app : (v : V) → F.obj v ≅ G.obj v)
(α_nat :
∀ {X Y : V} (f : X ⟶ Y),
CategoryStruct.comp (F.map f.toPath) (α_app Y).hom = CategoryStruct.comp (α_app X).hom (G.map f.toPath))
(X : Paths V)
:
@[simp]
theorem
CategoryTheory.Paths.liftNatIso_hom_app
{V : Type u₁}
[Quiver V]
{C : Type u_2}
[Category.{u_3, u_2} C]
{F G : Functor (Paths V) C}
(α_app : (v : V) → F.obj v ≅ G.obj v)
(α_nat :
∀ {X Y : V} (f : X ⟶ Y),
CategoryStruct.comp (F.map f.toPath) (α_app Y).hom = CategoryStruct.comp (α_app X).hom (G.map f.toPath))
(X : Paths V)
: