Documentation

Mathlib.CategoryTheory.Square

The category of commutative squares #

In this file, we define a bundled version of CommSq which allows to consider commutative squares as objects in a category Square C.

The four objects in a commutative square are numbered as follows:

X₁ --> X₂
|      |
v      v
X₃ --> X₄

We define the flip functor, and two equivalences with the category Arrow (Arrow C), depending on whether we consider a commutative square as a horizontal morphism between two vertical maps (arrowArrowEquivalence) or a vertical morphism between two horizontal maps (arrowArrowEquivalence').

structure CategoryTheory.Square (C : Type u) [Category.{v, u} C] :
Type (max u v)

The category of commutative squares in a category.

Instances For
    structure CategoryTheory.Square.Hom {C : Type u} [Category.{v, u} C] (sq₁ sq₂ : Square C) :

    A morphism between two commutative squares consists of 4 morphisms which extend these two squares into a commuting cube.

    Instances For
      theorem CategoryTheory.Square.Hom.ext {C : Type u} {inst✝ : Category.{v, u} C} {sq₁ sq₂ : Square C} {x y : sq₁.Hom sq₂} (τ₁ : x.τ₁ = y.τ₁) (τ₂ : x.τ₂ = y.τ₂) (τ₃ : x.τ₃ = y.τ₃) (τ₄ : x.τ₄ = y.τ₄) :
      x = y
      @[simp]
      theorem CategoryTheory.Square.Hom.comm₁₃_assoc {C : Type u} [Category.{v, u} C] {sq₁ sq₂ : Square C} (self : sq₁.Hom sq₂) {Z : C} (h : sq₂.X₃ Z) :
      @[simp]
      theorem CategoryTheory.Square.Hom.comm₁₂_assoc {C : Type u} [Category.{v, u} C] {sq₁ sq₂ : Square C} (self : sq₁.Hom sq₂) {Z : C} (h : sq₂.X₂ Z) :
      @[simp]
      theorem CategoryTheory.Square.Hom.comm₃₄_assoc {C : Type u} [Category.{v, u} C] {sq₁ sq₂ : Square C} (self : sq₁.Hom sq₂) {Z : C} (h : sq₂.X₄ Z) :
      @[simp]
      theorem CategoryTheory.Square.Hom.comm₂₄_assoc {C : Type u} [Category.{v, u} C] {sq₁ sq₂ : Square C} (self : sq₁.Hom sq₂) {Z : C} (h : sq₂.X₄ Z) :

      The identity of a commutative square.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def CategoryTheory.Square.Hom.comp {C : Type u} [Category.{v, u} C] {sq₁ sq₂ sq₃ : Square C} (f : sq₁.Hom sq₂) (g : sq₂.Hom sq₃) :
        sq₁.Hom sq₃

        The composition of morphisms of squares.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Square.Hom.comp_τ₂ {C : Type u} [Category.{v, u} C] {sq₁ sq₂ sq₃ : Square C} (f : sq₁.Hom sq₂) (g : sq₂.Hom sq₃) :
          @[simp]
          theorem CategoryTheory.Square.Hom.comp_τ₁ {C : Type u} [Category.{v, u} C] {sq₁ sq₂ sq₃ : Square C} (f : sq₁.Hom sq₂) (g : sq₂.Hom sq₃) :
          @[simp]
          theorem CategoryTheory.Square.Hom.comp_τ₃ {C : Type u} [Category.{v, u} C] {sq₁ sq₂ sq₃ : Square C} (f : sq₁.Hom sq₂) (g : sq₂.Hom sq₃) :
          @[simp]
          theorem CategoryTheory.Square.Hom.comp_τ₄ {C : Type u} [Category.{v, u} C] {sq₁ sq₂ sq₃ : Square C} (f : sq₁.Hom sq₂) (g : sq₂.Hom sq₃) :
          @[simp]
          theorem CategoryTheory.Square.category_comp_τ₄ {C : Type u} [Category.{v, u} C] {X✝ Y✝ Z✝ : Square C} (f : X✝.Hom Y✝) (g : Y✝.Hom Z✝) :
          @[simp]
          theorem CategoryTheory.Square.category_comp_τ₁ {C : Type u} [Category.{v, u} C] {X✝ Y✝ Z✝ : Square C} (f : X✝.Hom Y✝) (g : Y✝.Hom Z✝) :
          @[simp]
          theorem CategoryTheory.Square.category_comp_τ₂ {C : Type u} [Category.{v, u} C] {X✝ Y✝ Z✝ : Square C} (f : X✝.Hom Y✝) (g : Y✝.Hom Z✝) :
          @[simp]
          theorem CategoryTheory.Square.category_comp_τ₃ {C : Type u} [Category.{v, u} C] {X✝ Y✝ Z✝ : Square C} (f : X✝.Hom Y✝) (g : Y✝.Hom Z✝) :
          theorem CategoryTheory.Square.hom_ext {C : Type u} [Category.{v, u} C] {sq₁ sq₂ : Square C} {f g : sq₁ sq₂} (h₁ : f.τ₁ = g.τ₁) (h₂ : f.τ₂ = g.τ₂) (h₃ : f.τ₃ = g.τ₃) (h₄ : f.τ₄ = g.τ₄) :
          f = g
          def CategoryTheory.Square.isoMk {C : Type u} [Category.{v, u} C] {sq₁ sq₂ : Square C} (e₁ : sq₁.X₁ sq₂.X₁) (e₂ : sq₁.X₂ sq₂.X₂) (e₃ : sq₁.X₃ sq₂.X₃) (e₄ : sq₁.X₄ sq₂.X₄) (comm₁₂ : CategoryStruct.comp sq₁.f₁₂ e₂.hom = CategoryStruct.comp e₁.hom sq₂.f₁₂) (comm₁₃ : CategoryStruct.comp sq₁.f₁₃ e₃.hom = CategoryStruct.comp e₁.hom sq₂.f₁₃) (comm₂₄ : CategoryStruct.comp sq₁.f₂₄ e₄.hom = CategoryStruct.comp e₂.hom sq₂.f₂₄) (comm₃₄ : CategoryStruct.comp sq₁.f₃₄ e₄.hom = CategoryStruct.comp e₃.hom sq₂.f₃₄) :
          sq₁ sq₂

          Constructor for isomorphisms in Square c

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Flipping a square by switching the top-right and the bottom-left objects.

            Equations
            Instances For
              @[simp]
              @[simp]
              @[simp]
              @[simp]

              The functor which flips commutative squares.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem CategoryTheory.Square.flipFunctor_map_τ₂ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                @[simp]
                theorem CategoryTheory.Square.flipFunctor_map_τ₁ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                @[simp]
                theorem CategoryTheory.Square.flipFunctor_map_τ₃ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                @[simp]
                theorem CategoryTheory.Square.flipFunctor_map_τ₄ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :

                Flipping commutative squares is an auto-equivalence.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The functor Square C ⥤ Arrow (Arrow C) which sends a commutative square sq to the obvious arrow from the left morphism of sq to the right morphism of sq.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The functor Arrow (Arrow C) ⥤ Square C which sends a morphism Arrow.mk f ⟶ Arrow.mk g to the commutative square with f on the left side and g on the right side.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      The equivalence Square C ≌ Arrow (Arrow C) which sends a commutative square sq to the obvious arrow from the left morphism of sq to the right morphism of sq.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        The functor Square C ⥤ Arrow (Arrow C) which sends a commutative square sq to the obvious arrow from the top morphism of sq to the bottom morphism of sq.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          The functor Arrow (Arrow C) ⥤ Square C which sends a morphism Arrow.mk f ⟶ Arrow.mk g to the commutative square with f on the top side and g on the bottom side.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            The equivalence Square C ≌ Arrow (Arrow C) which sends a commutative square sq to the obvious arrow from the top morphism of sq to the bottom morphism of sq.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              The top-left evaluation Square C ⥤ C.

                              Equations
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Square.evaluation₁_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :

                                The top-right evaluation Square C ⥤ C.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem CategoryTheory.Square.evaluation₂_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :

                                  The bottom-left evaluation Square C ⥤ C.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem CategoryTheory.Square.evaluation₃_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :

                                    The bottom-right evaluation Square C ⥤ C.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem CategoryTheory.Square.evaluation₄_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :

                                      The map Square C → Square Cᵒᵖ which switches X₁ and X₃, but does not move X₂ and X₃.

                                      Equations
                                      Instances For

                                        The map Square Cᵒᵖ → Square C which switches X₁ and X₃, but does not move X₂ and X₃.

                                        Equations
                                        Instances For

                                          The functor (Square C)ᵒᵖ ⥤ Square Cᵒᵖ.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem CategoryTheory.Square.opFunctor_map_τ₂ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : (Square C)ᵒᵖ} (φ : X✝ Y✝) :
                                            @[simp]
                                            theorem CategoryTheory.Square.opFunctor_map_τ₄ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : (Square C)ᵒᵖ} (φ : X✝ Y✝) :
                                            @[simp]
                                            theorem CategoryTheory.Square.opFunctor_map_τ₃ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : (Square C)ᵒᵖ} (φ : X✝ Y✝) :
                                            @[simp]
                                            theorem CategoryTheory.Square.opFunctor_map_τ₁ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : (Square C)ᵒᵖ} (φ : X✝ Y✝) :

                                            The functor (Square Cᵒᵖ)ᵒᵖ ⥤ Square Cᵒᵖ.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For

                                              The equivalence (Square C)ᵒᵖ ≌ Square Cᵒᵖ.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                def CategoryTheory.Square.map {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :

                                                The image of a commutative square by a functor.

                                                Equations
                                                Instances For
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_f₂₄ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).f₂₄ = F.map sq.f₂₄
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_X₂ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).X₂ = F.obj sq.X₂
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_f₁₂ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).f₁₂ = F.map sq.f₁₂
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_X₁ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).X₁ = F.obj sq.X₁
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_X₄ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).X₄ = F.obj sq.X₄
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_f₃₄ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).f₃₄ = F.map sq.f₃₄
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_X₃ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).X₃ = F.obj sq.X₃
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_f₁₃ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).f₁₃ = F.map sq.f₁₃

                                                  The functor Square C ⥤ Square D induced by a functor C ⥤ D.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    @[simp]
                                                    theorem CategoryTheory.Functor.mapSquare_map_τ₁ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                                                    @[simp]
                                                    theorem CategoryTheory.Functor.mapSquare_map_τ₃ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                                                    @[simp]
                                                    theorem CategoryTheory.Functor.mapSquare_map_τ₂ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                                                    @[simp]
                                                    theorem CategoryTheory.Functor.mapSquare_map_τ₄ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                                                    @[simp]
                                                    theorem CategoryTheory.Functor.mapSquare_obj {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) (sq : Square C) :
                                                    F.mapSquare.obj sq = sq.map F

                                                    The natural transformation F.mapSquare ⟶ G.mapSquare induces by a natural transformation F ⟶ G.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      @[simp]
                                                      theorem CategoryTheory.NatTrans.mapSquare_app_τ₂ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {F G : Functor C D} (τ : F G) (sq : Square C) :
                                                      ((mapSquare τ).app sq).τ₂ = τ.app sq.X₂
                                                      @[simp]
                                                      theorem CategoryTheory.NatTrans.mapSquare_app_τ₃ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {F G : Functor C D} (τ : F G) (sq : Square C) :
                                                      ((mapSquare τ).app sq).τ₃ = τ.app sq.X₃
                                                      @[simp]
                                                      theorem CategoryTheory.NatTrans.mapSquare_app_τ₁ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {F G : Functor C D} (τ : F G) (sq : Square C) :
                                                      ((mapSquare τ).app sq).τ₁ = τ.app sq.X₁
                                                      @[simp]
                                                      theorem CategoryTheory.NatTrans.mapSquare_app_τ₄ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {F G : Functor C D} (τ : F G) (sq : Square C) :
                                                      ((mapSquare τ).app sq).τ₄ = τ.app sq.X₄

                                                      The functor (C ⥤ D) ⥤ Square C ⥤ Square D.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For
                                                        @[simp]
                                                        theorem CategoryTheory.Square.mapFunctor_map {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {X✝ Y✝ : Functor C D} (τ : X✝ Y✝) :