Sieves attached to subpresheaves #
Given a subpresheaf G of a presheaf of types F : Cᵒᵖ ⥤ Type w and
a section s : F.obj U, we define a sieve G.sieveOfSection s : Sieve (unop U)
and the associated compatible family of elements with values in G.toPresheaf.
def
CategoryTheory.Subpresheaf.sieveOfSection
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type w)}
(G : Subpresheaf F)
{U : Cᵒᵖ}
(s : F.obj U)
:
Sieve (Opposite.unop U)
Given a subpresheaf G of F, an F-section s on U, we may define a sieve of U
consisting of all f : V ⟶ U such that the restriction of s along f is in G.
Equations
- G.sieveOfSection s = { arrows := fun (V : C) (f : V ⟶ Opposite.unop U) => F.map f.op s ∈ G.obj (Opposite.op V), downward_closed := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Subpresheaf.sieveOfSection_apply
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type w)}
(G : Subpresheaf F)
{U : Cᵒᵖ}
(s : F.obj U)
(V : C)
(f : V ⟶ Opposite.unop U)
:
def
CategoryTheory.Subpresheaf.familyOfElementsOfSection
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type w)}
(G : Subpresheaf F)
{U : Cᵒᵖ}
(s : F.obj U)
:
Given an F-section s on U and a subpresheaf G, we may define a family of elements in
G consisting of the restrictions of s
Instances For
theorem
CategoryTheory.Subpresheaf.family_of_elements_compatible
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type w)}
(G : Subpresheaf F)
{U : Cᵒᵖ}
(s : F.obj U)
: