Documentation

Mathlib.CategoryTheory.Yoneda

The Yoneda embedding #

The Yoneda embedding as a functor yoneda : C ⥤ (Cᵒᵖ ⥤ Type v₁), along with an instance that it is FullyFaithful.

Also the Yoneda lemma, yonedaLemma : (yoneda_pairing C) ≅ (yoneda_evaluation C).

References #

The Yoneda embedding, as a functor from C into presheaves on C.

Stacks Tag 001O

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.yoneda_obj_obj {C : Type u₁} [Category.{v₁, u₁} C] (X : C) (Y : Cᵒᵖ) :
    @[simp]
    theorem CategoryTheory.yoneda_obj_map {C : Type u₁} [Category.{v₁, u₁} C] (X : C) {X✝ Y✝ : Cᵒᵖ} (f : X✝ Y✝) (g : Opposite.unop X✝ X) :
    @[simp]
    theorem CategoryTheory.yoneda_map_app {C : Type u₁} [Category.{v₁, u₁} C] {X✝ Y✝ : C} (f : X✝ Y✝) (x✝ : Cᵒᵖ) (g : { obj := fun (Y : Cᵒᵖ) => Opposite.unop Y X✝, map := fun {X Y : Cᵒᵖ} (f : X Y) (g : Opposite.unop X X✝) => CategoryStruct.comp f.unop g, map_id := , map_comp := }.obj x✝) :

    The co-Yoneda embedding, as a functor from Cᵒᵖ into co-presheaves on C.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.coyoneda_obj_map {C : Type u₁} [Category.{v₁, u₁} C] (X : Cᵒᵖ) {X✝ Y✝ : C} (f : X✝ Y✝) (g : Opposite.unop X X✝) :
      @[simp]
      theorem CategoryTheory.coyoneda_map_app {C : Type u₁} [Category.{v₁, u₁} C] {X✝ Y✝ : Cᵒᵖ} (f : X✝ Y✝) (x✝ : C) (g : { obj := fun (Y : C) => Opposite.unop X✝ Y, map := fun {X Y : C} (f : X Y) (g : Opposite.unop X✝ X) => CategoryStruct.comp g f, map_id := , map_comp := }.obj x✝) :
      @[simp]
      @[simp]
      theorem CategoryTheory.Yoneda.naturality {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (α : yoneda.obj X yoneda.obj Y) {Z Z' : C} (f : Z Z') (h : Z' X) :

      The Yoneda embedding is fully faithful.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def CategoryTheory.Yoneda.ext {C : Type u₁} [Category.{v₁, u₁} C] (X Y : C) (p : {Z : C} → (Z X) → (Z Y)) (q : {Z : C} → (Z Y) → (Z X)) (h₁ : ∀ {Z : C} (f : Z X), q (p f) = f) (h₂ : ∀ {Z : C} (f : Z Y), p (q f) = f) (n : ∀ {Z Z' : C} (f : Z' Z) (g : Z X), p (CategoryStruct.comp f g) = CategoryStruct.comp f (p g)) :
        X Y

        Extensionality via Yoneda. The typical usage would be

        -- Goal is `X ≅ Y`
        apply Yoneda.ext
        -- Goals are now functions `(Z ⟶ X) → (Z ⟶ Y)`, `(Z ⟶ Y) → (Z ⟶ X)`, and the fact that these
        -- functions are inverses and natural in `Z`.
        
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem CategoryTheory.Yoneda.isIso {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) [IsIso (yoneda.map f)] :

          If yoneda.map f is an isomorphism, so was f.

          @[simp]
          theorem CategoryTheory.Coyoneda.naturality {C : Type u₁} [Category.{v₁, u₁} C] {X Y : Cᵒᵖ} (α : coyoneda.obj X coyoneda.obj Y) {Z Z' : C} (f : Z' Z) (h : Opposite.unop X Z') :

          The co-Yoneda embedding is fully faithful.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The morphism X ⟶ Y corresponding to a natural transformation coyoneda.obj X ⟶ coyoneda.obj Y.

            Equations
            Instances For
              def CategoryTheory.Coyoneda.ext {C : Type u₁} [Category.{v₁, u₁} C] (X Y : C) (p : {Z : C} → (X Z) → (Y Z)) (q : {Z : C} → (Y Z) → (X Z)) (h₁ : ∀ {Z : C} (f : X Z), q (p f) = f) (h₂ : ∀ {Z : C} (f : Y Z), p (q f) = f) (n : ∀ {Z Z' : C} (f : Y Z) (g : Z Z'), q (CategoryStruct.comp f g) = CategoryStruct.comp (q f) g) :
              X Y

              Extensionality via Coyoneda. The typical usage would be

              -- Goal is `X ≅ Y`
              apply Coyoneda.ext
              -- Goals are now functions `(X ⟶ Z) → (Y ⟶ Z)`, `(Y ⟶ Z) → (X ⟶ Z)`, and the fact that these
              -- functions are inverses and natural in `Z`.
              
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem CategoryTheory.Coyoneda.isIso {C : Type u₁} [Category.{v₁, u₁} C] {X Y : Cᵒᵖ} (f : X Y) [IsIso (coyoneda.map f)] :

                If coyoneda.map f is an isomorphism, so was f.

                The identity functor on Type is isomorphic to the coyoneda functor coming from PUnit.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  Taking the unop of morphisms is a natural isomorphism.

                  Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.Coyoneda.objOpOp_inv_app {C : Type u₁} [Category.{v₁, u₁} C] (X : C) (X✝ : Cᵒᵖ) (a✝ : (yoneda.obj X).obj X✝) :
                    (objOpOp X).inv.app X✝ a✝ = (opEquiv (Opposite.op X) X✝).symm a✝
                    @[simp]
                    theorem CategoryTheory.Coyoneda.objOpOp_hom_app {C : Type u₁} [Category.{v₁, u₁} C] (X : C) (X✝ : Cᵒᵖ) (a✝ : (coyoneda.obj (Opposite.op (Opposite.op X))).obj X✝) :
                    (objOpOp X).hom.app X✝ a✝ = (opEquiv (Opposite.op X) X✝) a✝

                    Taking the unop of morphisms is a natural isomorphism.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      structure CategoryTheory.Functor.RepresentableBy {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor Cᵒᵖ (Type v)) (Y : C) :
                      Type (max (max u₁ v) v₁)

                      The data which expresses that a functor F : Cᵒᵖ ⥤ Type v is representable by Y : C.

                      Instances For

                        If F ≅ F', and F is representable, then F' is representable.

                        Equations
                        Instances For
                          structure CategoryTheory.Functor.CorepresentableBy {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor C (Type v)) (X : C) :
                          Type (max (max u₁ v) v₁)

                          The data which expresses that a functor F : C ⥤ Type v is corepresentable by X : C.

                          Instances For
                            theorem CategoryTheory.Functor.CorepresentableBy.homEquiv_symm_comp {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor C (Type v)} {X : C} (e : F.CorepresentableBy X) {Y Y' : C} (y : F.obj Y) (g : Y Y') :

                            If F ≅ F', and F is corepresentable, then F' is corepresentable.

                            Equations
                            Instances For

                              Representing objects are unique up to isomorphism.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_hom {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor Cᵒᵖ (Type v)} {Y Y' : C} (e : F.RepresentableBy Y) (e' : F.RepresentableBy Y') :
                                (e.uniqueUpToIso e').hom = Yoneda.fullyFaithful.preimage (NatIso.ofComponents (fun (Z : Cᵒᵖ) => { hom := e'.homEquiv.symm e.homEquiv, inv := (e.homEquiv.trans e'.homEquiv.symm).symm, hom_inv_id := , inv_hom_id := }) ).hom
                                @[simp]
                                theorem CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_inv {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor Cᵒᵖ (Type v)} {Y Y' : C} (e : F.RepresentableBy Y) (e' : F.RepresentableBy Y') :
                                (e.uniqueUpToIso e').inv = Yoneda.fullyFaithful.preimage (NatIso.ofComponents (fun (Z : Cᵒᵖ) => { hom := e'.homEquiv.symm e.homEquiv, inv := (e.homEquiv.trans e'.homEquiv.symm).symm, hom_inv_id := , inv_hom_id := }) ).inv

                                Corepresenting objects are unique up to isomorphism.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_inv {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor C (Type v)} {X X' : C} (e : F.CorepresentableBy X) (e' : F.CorepresentableBy X') :
                                  (e.uniqueUpToIso e').inv = (Coyoneda.fullyFaithful.preimage (NatIso.ofComponents (fun (Z : C) => { hom := (e.homEquiv.trans e'.homEquiv.symm).symm, inv := e'.homEquiv.symm e.homEquiv, hom_inv_id := , inv_hom_id := }) ).inv).unop
                                  @[simp]
                                  theorem CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_hom {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor C (Type v)} {X X' : C} (e : F.CorepresentableBy X) (e' : F.CorepresentableBy X') :
                                  (e.uniqueUpToIso e').hom = (Coyoneda.fullyFaithful.preimage (NatIso.ofComponents (fun (Z : C) => { hom := (e.homEquiv.trans e'.homEquiv.symm).symm, inv := e'.homEquiv.symm e.homEquiv, hom_inv_id := , inv_hom_id := }) ).hom).unop

                                  The obvious bijection F.RepresentableBy Y ≃ (yoneda.obj Y ≅ F) when F : Cᵒᵖ ⥤ Type v₁ and [Category.{v₁} C].

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For

                                    The isomorphism yoneda.obj Y ≅ F induced by e : F.RepresentableBy Y.

                                    Equations
                                    Instances For

                                      The obvious bijection F.CorepresentableBy X ≃ (yoneda.obj Y ≅ F) when F : C ⥤ Type v₁ and [Category.{v₁} C].

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For

                                        The isomorphism coyoneda.obj (op X) ≅ F induced by e : F.CorepresentableBy X.

                                        Equations
                                        Instances For

                                          A functor F : Cᵒᵖ ⥤ Type v is representable if there is an object Y with a structure F.RepresentableBy Y, i.e. there is a natural bijection (X ⟶ Y) ≃ F.obj (op X), which may also be rephrased as a natural isomorphism yoneda.obj X ≅ F when Category.{v} C.

                                          Instances

                                            Alternative constructor for F.IsRepresentable, which takes as an input an isomorphism yoneda.obj X ≅ F.

                                            A functor F : C ⥤ Type v₁ is corepresentable if there is object X so F ≅ coyoneda.obj X.

                                            Instances

                                              Alternative constructor for F.IsCorepresentable, which takes as an input an isomorphism coyoneda.obj (op X) ≅ F.

                                              noncomputable def CategoryTheory.Functor.reprX {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor Cᵒᵖ (Type v)) [hF : F.IsRepresentable] :
                                              C

                                              The representing object for the representable functor F.

                                              Equations
                                              Instances For

                                                A chosen term in F.RepresentableBy (reprX F) when F.IsRepresentable holds.

                                                Equations
                                                Instances For

                                                  Any representing object for a representable functor F is isomorphic to reprX F.

                                                  Equations
                                                  Instances For

                                                    The representing element for the representable functor F, sometimes called the universal element of the functor.

                                                    Equations
                                                    Instances For

                                                      An isomorphism between a representable F and a functor of the form C(-, F.reprX). Note the components F.reprW.app X definitionally have type (X.unop ⟶ F.reprX) ≅ F.obj X.

                                                      Equations
                                                      Instances For
                                                        noncomputable def CategoryTheory.Functor.coreprX {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor C (Type v)) [hF : F.IsCorepresentable] :
                                                        C

                                                        The representing object for the corepresentable functor F.

                                                        Equations
                                                        Instances For

                                                          A chosen term in F.CorepresentableBy (coreprX F) when F.IsCorepresentable holds.

                                                          Equations
                                                          Instances For

                                                            Any corepresenting object for a corepresentable functor F is isomorphic to coreprX F.

                                                            Equations
                                                            Instances For
                                                              noncomputable def CategoryTheory.Functor.coreprx {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor C (Type v)) [hF : F.IsCorepresentable] :

                                                              The representing element for the corepresentable functor F, sometimes called the universal element of the functor.

                                                              Equations
                                                              Instances For

                                                                An isomorphism between a corepresentable F and a functor of the form C(F.corepr X, -). Note the components F.coreprW.app X definitionally have type F.corepr_X ⟶ X ≅ F.obj X.

                                                                Equations
                                                                Instances For

                                                                  We have a type-level equivalence between natural transformations from the yoneda embedding and elements of F.obj X, without any universe switching.

                                                                  Equations
                                                                  • One or more equations did not get rendered due to their size.
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem CategoryTheory.yonedaEquiv_symm_app_apply {C : Type u₁} [Category.{v₁, u₁} C] {X : C} {F : Functor Cᵒᵖ (Type v₁)} (x : F.obj (Opposite.op X)) (Y : Cᵒᵖ) (f : Opposite.unop Y X) :
                                                                    (yonedaEquiv.symm x).app Y f = F.map f.op x

                                                                    See also yonedaEquiv_naturality' for a more general version.

                                                                    Variant of yonedaEquiv_naturality with general g. This is technically strictly more general than yonedaEquiv_naturality, but yonedaEquiv_naturality is sometimes preferable because it can avoid the "motive is not type correct" error.

                                                                    theorem CategoryTheory.yonedaEquiv_comp {C : Type u₁} [Category.{v₁, u₁} C] {X : C} {F G : Functor Cᵒᵖ (Type v₁)} (α : yoneda.obj X F) (β : F G) :
                                                                    theorem CategoryTheory.map_yonedaEquiv {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} {F : Functor Cᵒᵖ (Type v₁)} (f : yoneda.obj X F) (g : Y X) :
                                                                    F.map g.op (yonedaEquiv f) = f.app (Opposite.op Y) g

                                                                    See also map_yonedaEquiv' for a more general version.

                                                                    theorem CategoryTheory.map_yonedaEquiv' {C : Type u₁} [Category.{v₁, u₁} C] {X Y : Cᵒᵖ} {F : Functor Cᵒᵖ (Type v₁)} (f : yoneda.obj (Opposite.unop X) F) (g : X Y) :
                                                                    F.map g (yonedaEquiv f) = f.app Y g.unop

                                                                    Variant of map_yonedaEquiv with general g. This is technically strictly more general than map_yonedaEquiv, but map_yonedaEquiv is sometimes preferable because it can avoid the "motive is not type correct" error.

                                                                    theorem CategoryTheory.hom_ext_yoneda {C : Type u₁} [Category.{v₁, u₁} C] {P Q : Functor Cᵒᵖ (Type v₁)} {f g : P Q} (h : ∀ (X : C) (p : yoneda.obj X P), CategoryStruct.comp p f = CategoryStruct.comp p g) :
                                                                    f = g

                                                                    Two morphisms of presheaves of types P ⟶ Q coincide if the precompositions with morphisms yoneda.obj X ⟶ P agree.

                                                                    The "Yoneda evaluation" functor, which sends X : Cᵒᵖ and F : Cᵒᵖ ⥤ Type to F.obj X, functorially in both X and F.

                                                                    Equations
                                                                    Instances For
                                                                      @[simp]
                                                                      theorem CategoryTheory.yonedaEvaluation_map_down (C : Type u₁) [Category.{v₁, u₁} C] (P Q : Cᵒᵖ × Functor Cᵒᵖ (Type v₁)) (α : P Q) (x : (yonedaEvaluation C).obj P) :
                                                                      ((yonedaEvaluation C).map α x).down = α.2.app Q.1 (P.2.map α.1 x.down)

                                                                      The "Yoneda pairing" functor, which sends X : Cᵒᵖ and F : Cᵒᵖ ⥤ Type to yoneda.op.obj X ⟶ F, functorially in both X and F.

                                                                      Equations
                                                                      • One or more equations did not get rendered due to their size.
                                                                      Instances For
                                                                        theorem CategoryTheory.yonedaPairingExt (C : Type u₁) [Category.{v₁, u₁} C] {X : Cᵒᵖ × Functor Cᵒᵖ (Type v₁)} {x y : (yonedaPairing C).obj X} (w : ∀ (Y : Cᵒᵖ), x.app Y = y.app Y) :
                                                                        x = y
                                                                        theorem CategoryTheory.yonedaPairingExt_iff {C : Type u₁} [Category.{v₁, u₁} C] {X : Cᵒᵖ × Functor Cᵒᵖ (Type v₁)} {x y : (yonedaPairing C).obj X} :
                                                                        x = y ∀ (Y : Cᵒᵖ), x.app Y = y.app Y

                                                                        A bijection (yoneda.obj X ⋙ uliftFunctor ⟶ F) ≃ F.obj (op X) which is a variant of yonedaEquiv with heterogeneous universes.

                                                                        Equations
                                                                        • One or more equations did not get rendered due to their size.
                                                                        Instances For

                                                                          The Yoneda lemma asserts that the Yoneda pairing (X : Cᵒᵖ, F : Cᵒᵖ ⥤ Type) ↦ (yoneda.obj (unop X) ⟶ F) is naturally isomorphic to the evaluation (X, F) ↦ F.obj X.

                                                                          Stacks Tag 001P

                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          Instances For

                                                                            The curried version of yoneda lemma when C is small.

                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For

                                                                              The curried version of the Yoneda lemma.

                                                                              Equations
                                                                              • One or more equations did not get rendered due to their size.
                                                                              Instances For

                                                                                Version of the Yoneda lemma where the presheaf is fixed but the argument varies.

                                                                                Equations
                                                                                • One or more equations did not get rendered due to their size.
                                                                                Instances For

                                                                                  The curried version of yoneda lemma when C is small.

                                                                                  Equations
                                                                                  • One or more equations did not get rendered due to their size.
                                                                                  Instances For
                                                                                    theorem CategoryTheory.isIso_of_yoneda_map_bijective {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) (hf : ∀ (T : C), Function.Bijective fun (x : T X) => CategoryStruct.comp x f) :
                                                                                    theorem CategoryTheory.isIso_iff_yoneda_map_bijective {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
                                                                                    IsIso f ∀ (T : C), Function.Bijective fun (x : T X) => CategoryStruct.comp x f
                                                                                    theorem CategoryTheory.isIso_iff_isIso_yoneda_map {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
                                                                                    IsIso f ∀ (c : C), IsIso ((yoneda.map f).app (Opposite.op c))
                                                                                    def CategoryTheory.coyonedaEquiv {C : Type u₁} [Category.{v₁, u₁} C] {X : C} {F : Functor C (Type v₁)} :

                                                                                    We have a type-level equivalence between natural transformations from the coyoneda embedding and elements of F.obj X.unop, without any universe switching.

                                                                                    Equations
                                                                                    • One or more equations did not get rendered due to their size.
                                                                                    Instances For
                                                                                      @[simp]
                                                                                      theorem CategoryTheory.coyonedaEquiv_symm_app_apply {C : Type u₁} [Category.{v₁, u₁} C] {X : C} {F : Functor C (Type v₁)} (x : F.obj X) (Y : C) (f : X Y) :
                                                                                      (coyonedaEquiv.symm x).app Y f = F.map f x
                                                                                      theorem CategoryTheory.coyonedaEquiv_comp {C : Type u₁} [Category.{v₁, u₁} C] {X : C} {F G : Functor C (Type v₁)} (α : coyoneda.obj (Opposite.op X) F) (β : F G) :
                                                                                      theorem CategoryTheory.map_coyonedaEquiv {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} {F : Functor C (Type v₁)} (f : coyoneda.obj (Opposite.op X) F) (g : X Y) :
                                                                                      F.map g (coyonedaEquiv f) = f.app Y g
                                                                                      def CategoryTheory.coyonedaEvaluation (C : Type u₁) [Category.{v₁, u₁} C] :
                                                                                      Functor (C × Functor C (Type v₁)) (Type (max u₁ v₁))

                                                                                      The "Coyoneda evaluation" functor, which sends X : C and F : C ⥤ Type to F.obj X, functorially in both X and F.

                                                                                      Equations
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem CategoryTheory.coyonedaEvaluation_map_down (C : Type u₁) [Category.{v₁, u₁} C] (P Q : C × Functor C (Type v₁)) (α : P Q) (x : (coyonedaEvaluation C).obj P) :
                                                                                        ((coyonedaEvaluation C).map α x).down = α.2.app Q.1 (P.2.map α.1 x.down)
                                                                                        def CategoryTheory.coyonedaPairing (C : Type u₁) [Category.{v₁, u₁} C] :
                                                                                        Functor (C × Functor C (Type v₁)) (Type (max u₁ v₁))

                                                                                        The "Coyoneda pairing" functor, which sends X : C and F : C ⥤ Type to coyoneda.rightOp.obj X ⟶ F, functorially in both X and F.

                                                                                        Equations
                                                                                        • One or more equations did not get rendered due to their size.
                                                                                        Instances For
                                                                                          theorem CategoryTheory.coyonedaPairingExt (C : Type u₁) [Category.{v₁, u₁} C] {X : C × Functor C (Type v₁)} {x y : (coyonedaPairing C).obj X} (w : ∀ (Y : C), x.app Y = y.app Y) :
                                                                                          x = y
                                                                                          theorem CategoryTheory.coyonedaPairingExt_iff {C : Type u₁} [Category.{v₁, u₁} C] {X : C × Functor C (Type v₁)} {x y : (coyonedaPairing C).obj X} :
                                                                                          x = y ∀ (Y : C), x.app Y = y.app Y
                                                                                          @[simp]

                                                                                          A bijection (coyoneda.obj X ⋙ uliftFunctor ⟶ F) ≃ F.obj (unop X) which is a variant of coyonedaEquiv with heterogeneous universes.

                                                                                          Equations
                                                                                          • One or more equations did not get rendered due to their size.
                                                                                          Instances For

                                                                                            The Coyoneda lemma asserts that the Coyoneda pairing (X : C, F : C ⥤ Type) ↦ (coyoneda.obj X ⟶ F) is naturally isomorphic to the evaluation (X, F) ↦ F.obj X.

                                                                                            Stacks Tag 001P

                                                                                            Equations
                                                                                            Instances For

                                                                                              The curried version of coyoneda lemma when C is small.

                                                                                              Equations
                                                                                              • One or more equations did not get rendered due to their size.
                                                                                              Instances For

                                                                                                The curried version of the Coyoneda lemma.

                                                                                                Equations
                                                                                                • One or more equations did not get rendered due to their size.
                                                                                                Instances For

                                                                                                  Version of the Coyoneda lemma where the presheaf is fixed but the argument varies.

                                                                                                  Equations
                                                                                                  • One or more equations did not get rendered due to their size.
                                                                                                  Instances For

                                                                                                    The curried version of coyoneda lemma when C is small.

                                                                                                    Equations
                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                    Instances For
                                                                                                      theorem CategoryTheory.isIso_of_coyoneda_map_bijective {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) (hf : ∀ (T : C), Function.Bijective fun (x : Y T) => CategoryStruct.comp f x) :
                                                                                                      theorem CategoryTheory.isIso_iff_coyoneda_map_bijective {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
                                                                                                      IsIso f ∀ (T : C), Function.Bijective fun (x : Y T) => CategoryStruct.comp f x
                                                                                                      theorem CategoryTheory.isIso_iff_isIso_coyoneda_map {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
                                                                                                      IsIso f ∀ (c : C), IsIso ((coyoneda.map f.op).app c)
                                                                                                      def CategoryTheory.yonedaMap {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u_1} [Category.{v₁, u_1} D] (F : Functor C D) (X : C) :

                                                                                                      The natural transformation yoneda.obj X ⟶ F.op ⋙ yoneda.obj (F.obj X) when F : C ⥤ D and X : C.

                                                                                                      Equations
                                                                                                      Instances For
                                                                                                        @[simp]
                                                                                                        theorem CategoryTheory.yonedaMap_app_apply {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u_1} [Category.{v₁, u_1} D] (F : Functor C D) {Y : C} {X : Cᵒᵖ} (f : Opposite.unop X Y) :
                                                                                                        (yonedaMap F Y).app X f = F.map f
                                                                                                        def CategoryTheory.Functor.sectionsEquivHom {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor C (Type u₂)) (X : Type u₂) [Unique X] :
                                                                                                        F.sections ((const C).obj X F)

                                                                                                        A type-level equivalence between sections of a functor and morphisms from a terminal functor to it. We use the constant functor on a given singleton type here as a specific choice of terminal functor.

                                                                                                        Equations
                                                                                                        • One or more equations did not get rendered due to their size.
                                                                                                        Instances For
                                                                                                          @[simp]
                                                                                                          theorem CategoryTheory.Functor.sectionsEquivHom_apply_app {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor C (Type u₂)) (X : Type u₂) [Unique X] (s : F.sections) (j : C) (x : ((const C).obj X).obj j) :
                                                                                                          ((F.sectionsEquivHom X) s).app j x = s j

                                                                                                          A natural isomorphism between the sections functor (C ⥤ Type _) ⥤ Type _ and the co-Yoneda embedding of a terminal functor, specifically a constant functor on a given singleton type X.

                                                                                                          Equations
                                                                                                          Instances For
                                                                                                            @[simp]
                                                                                                            theorem CategoryTheory.sectionsFunctorNatIsoCoyoneda_hom_app_app {C : Type u₁} [Category.{v₁, u₁} C] (X : Type (max u₁ u₂)) [Unique X] (X✝ : Functor C (Type (max u₁ u₂))) (a✝ : (Functor.sectionsFunctor C).obj X✝) (j : C) (x : ((Functor.const C).obj X).obj j) :
                                                                                                            ((sectionsFunctorNatIsoCoyoneda X).hom.app X✝ a✝).app j x = a✝ j
                                                                                                            @[simp]
                                                                                                            theorem CategoryTheory.sectionsFunctorNatIsoCoyoneda_inv_app_coe {C : Type u₁} [Category.{v₁, u₁} C] (X : Type (max u₁ u₂)) [Unique X] (X✝ : Functor C (Type (max u₁ u₂))) (a✝ : (coyoneda.obj (Opposite.op ((Functor.const C).obj X))).obj X✝) (j : C) :
                                                                                                            ((sectionsFunctorNatIsoCoyoneda X).inv.app X✝ a✝) j = a✝.app j default
                                                                                                            @[simp]
                                                                                                            theorem CategoryTheory.Functor.FullyFaithful.homNatIso_hom_app_down {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : (F.op.comp ((yoneda.obj (F.obj X)).comp uliftFunctor.{v₁, v₂})).obj X✝) :
                                                                                                            ((hF.homNatIso X).hom.app X✝ a✝).down = hF.preimage a✝.down
                                                                                                            @[simp]
                                                                                                            theorem CategoryTheory.Functor.FullyFaithful.homNatIso_inv_app_down {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : ((yoneda.obj X).comp uliftFunctor.{v₂, v₁}).obj X✝) :
                                                                                                            ((hF.homNatIso X).inv.app X✝ a✝).down = F.map a✝.down
                                                                                                            @[simp]
                                                                                                            theorem CategoryTheory.Functor.FullyFaithful.homNatIsoMaxRight_hom_app_down {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{max v₁ v₂, u₂} D] {F : Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : (F.op.comp (yoneda.obj (F.obj X))).obj X✝) :
                                                                                                            ((hF.homNatIsoMaxRight X).hom.app X✝ a✝).down = hF.preimage a✝