Submonoid of pairs with quotient in a submonoid #
This file defines the submonoid of pairs whose quotient lies in a submonoid of the localization.
def
Submonoid.divPairs
{M : Type u_1}
{G : Type u_2}
[CommMonoid M]
[CommGroup G]
(f : ⊤.LocalizationMap G)
(s : Submonoid G)
:
Given a commutative monoid M
, a localization map f
to its Grothendieck group G
and
a submonoid s
of G
, s.divPairs f
is the submonoid of pairs (a, b)
such that f a / f b ∈ s
.
Equations
- Submonoid.divPairs f s = Submonoid.comap (divMonoidHom.comp (f.toMap.prodMap f.toMap)) s
Instances For
def
AddSubmonoid.subPairs
{M : Type u_1}
{G : Type u_2}
[AddCommMonoid M]
[AddCommGroup G]
(f : ⊤.LocalizationMap G)
(s : AddSubmonoid G)
:
AddSubmonoid (M × M)
Given an additive commutative monoid M
, a localization map f
to its Grothendieck group G
and
a submonoid s
of G
, s.subPairs f
is the submonoid of pairs (a, b)
such that f a - f b ∈ s
.
Equations
- AddSubmonoid.subPairs f s = AddSubmonoid.comap (subAddMonoidHom.comp (f.toMap.prodMap f.toMap)) s
Instances For
@[simp]
theorem
AddSubmonoid.mem_subPairs
{M : Type u_1}
{G : Type u_2}
[AddCommMonoid M]
[AddCommGroup G]
{f : ⊤.LocalizationMap G}
{s : AddSubmonoid G}
{x : M × M}
:
theorem
Submonoid.divPairs_comap
{M : Type u_1}
{G : Type u_2}
{H : Type u_3}
[CommMonoid M]
[CommGroup G]
[CommGroup H]
(f : ⊤.LocalizationMap G)
(g : ⊤.LocalizationMap H)
(s : Submonoid G)
:
theorem
AddSubmonoid.subPairs_comap
{M : Type u_1}
{G : Type u_2}
{H : Type u_3}
[AddCommMonoid M]
[AddCommGroup G]
[AddCommGroup H]
(f : ⊤.LocalizationMap G)
(g : ⊤.LocalizationMap H)
(s : AddSubmonoid G)
: