Documentation

Mathlib.GroupTheory.MonoidLocalization.DivPairs

Submonoid of pairs with quotient in a submonoid #

This file defines the submonoid of pairs whose quotient lies in a submonoid of the localization.

def Submonoid.divPairs {M : Type u_1} {G : Type u_2} [CommMonoid M] [CommGroup G] (f : .LocalizationMap G) (s : Submonoid G) :

Given a commutative monoid M, a localization map f to its Grothendieck group G and a submonoid s of G, s.divPairs f is the submonoid of pairs (a, b) such that f a / f b ∈ s.

Equations
Instances For

    Given an additive commutative monoid M, a localization map f to its Grothendieck group G and a submonoid s of G, s.subPairs f is the submonoid of pairs (a, b) such that f a - f b ∈ s.

    Equations
    Instances For
      @[simp]
      theorem Submonoid.mem_divPairs {M : Type u_1} {G : Type u_2} [CommMonoid M] [CommGroup G] {f : .LocalizationMap G} {s : Submonoid G} {x : M × M} :
      x divPairs f s f.toMap x.1 / f.toMap x.2 s
      @[simp]
      theorem AddSubmonoid.mem_subPairs {M : Type u_1} {G : Type u_2} [AddCommMonoid M] [AddCommGroup G] {f : .LocalizationMap G} {s : AddSubmonoid G} {x : M × M} :
      x subPairs f s f.toMap x.1 - f.toMap x.2 s