The general linear group of linear maps #
The general linear group is defined to be the group of invertible linear maps from M
to itself.
See also Matrix.GeneralLinearGroup
Main definitions #
@[reducible, inline]
abbrev
LinearMap.GeneralLinearGroup
(R : Type u_1)
(M : Type u_2)
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
Type u_2
The group of invertible linear maps from M
to itself
Equations
- LinearMap.GeneralLinearGroup R M = (M →ₗ[R] M)ˣ
Instances For
def
LinearMap.GeneralLinearGroup.toLinearEquiv
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : GeneralLinearGroup R M)
:
An invertible linear map f
determines an equivalence from M
to itself.
Equations
Instances For
@[simp]
theorem
LinearMap.GeneralLinearGroup.coe_toLinearEquiv
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : GeneralLinearGroup R M)
:
def
LinearMap.GeneralLinearGroup.ofLinearEquiv
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : M ≃ₗ[R] M)
:
An equivalence from M
to itself determines an invertible linear map.
Equations
- LinearMap.GeneralLinearGroup.ofLinearEquiv f = { val := ↑f, inv := ↑f.symm, val_inv := ⋯, inv_val := ⋯ }
Instances For
@[simp]
theorem
LinearMap.GeneralLinearGroup.coe_ofLinearEquiv
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : M ≃ₗ[R] M)
:
def
LinearMap.GeneralLinearGroup.generalLinearEquiv
(R : Type u_1)
(M : Type u_2)
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
The general linear group on R
and M
is multiplicatively equivalent to the type of linear
equivalences between M
and itself.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LinearMap.GeneralLinearGroup.generalLinearEquiv_to_linearMap
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : GeneralLinearGroup R M)
:
@[simp]
theorem
LinearMap.GeneralLinearGroup.coeFn_generalLinearEquiv
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : GeneralLinearGroup R M)
:
def
LinearMap.GeneralLinearGroup.congrLinearEquiv
{R₁ : Type u_3}
{R₂ : Type u_4}
{M₁ : Type u_6}
{M₂ : Type u_7}
[Semiring R₁]
[Semiring R₂]
[AddCommMonoid M₁]
[AddCommMonoid M₂]
[Module R₁ M₁]
[Module R₂ M₂]
{σ₁₂ : R₁ →+* R₂}
{σ₂₁ : R₂ →+* R₁}
[RingHomInvPair σ₁₂ σ₂₁]
[RingHomInvPair σ₂₁ σ₁₂]
(e₁₂ : M₁ ≃ₛₗ[σ₁₂] M₂)
:
A semilinear equivalence from V
to W
determines an isomorphism of general linear
groups.
Equations
Instances For
@[simp]
theorem
LinearMap.GeneralLinearGroup.congrLinearEquiv_apply
{R₁ : Type u_3}
{R₂ : Type u_4}
{M₁ : Type u_6}
{M₂ : Type u_7}
[Semiring R₁]
[Semiring R₂]
[AddCommMonoid M₁]
[AddCommMonoid M₂]
[Module R₁ M₁]
[Module R₂ M₂]
{σ₁₂ : R₁ →+* R₂}
{σ₂₁ : R₂ →+* R₁}
[RingHomInvPair σ₁₂ σ₂₁]
[RingHomInvPair σ₂₁ σ₁₂]
(e₁₂ : M₁ ≃ₛₗ[σ₁₂] M₂)
(g : GeneralLinearGroup R₁ M₁)
:
@[simp]
theorem
LinearMap.GeneralLinearGroup.congrLinearEquiv_symm
{R₁ : Type u_3}
{R₂ : Type u_4}
{M₁ : Type u_6}
{M₂ : Type u_7}
[Semiring R₁]
[Semiring R₂]
[AddCommMonoid M₁]
[AddCommMonoid M₂]
[Module R₁ M₁]
[Module R₂ M₂]
{σ₁₂ : R₁ →+* R₂}
{σ₂₁ : R₂ →+* R₁}
[RingHomInvPair σ₁₂ σ₂₁]
[RingHomInvPair σ₂₁ σ₁₂]
(e₁₂ : M₁ ≃ₛₗ[σ₁₂] M₂)
:
@[simp]
theorem
LinearMap.GeneralLinearGroup.congrLinearEquiv_trans
{R : Type u_1}
[Semiring R]
{N₁ : Type u_9}
{N₂ : Type u_10}
{N₃ : Type u_11}
[AddCommMonoid N₁]
[AddCommMonoid N₂]
[AddCommMonoid N₃]
[Module R N₁]
[Module R N₂]
[Module R N₃]
(e₁₂ : N₁ ≃ₗ[R] N₂)
(e₂₃ : N₂ ≃ₗ[R] N₃)
:
theorem
LinearMap.GeneralLinearGroup.congrLinearEquiv_trans'
{R₁ : Type u_3}
{R₂ : Type u_4}
{R₃ : Type u_5}
{M₁ : Type u_6}
{M₂ : Type u_7}
{M₃ : Type u_8}
[Semiring R₁]
[Semiring R₂]
[Semiring R₃]
[AddCommMonoid M₁]
[AddCommMonoid M₂]
[AddCommMonoid M₃]
[Module R₁ M₁]
[Module R₂ M₂]
[Module R₃ M₃]
{σ₁₂ : R₁ →+* R₂}
{σ₂₃ : R₂ →+* R₃}
{σ₁₃ : R₁ →+* R₃}
{σ₂₁ : R₂ →+* R₁}
{σ₃₂ : R₃ →+* R₂}
{σ₃₁ : R₃ →+* R₁}
[RingHomInvPair σ₁₂ σ₂₁]
[RingHomInvPair σ₂₃ σ₃₂]
[RingHomInvPair σ₁₃ σ₃₁]
[RingHomInvPair σ₂₁ σ₁₂]
[RingHomInvPair σ₃₂ σ₂₃]
[RingHomInvPair σ₃₁ σ₁₃]
[RingHomCompTriple σ₁₂ σ₂₃ σ₁₃]
[RingHomCompTriple σ₃₂ σ₂₁ σ₃₁]
(e₁₂ : M₁ ≃ₛₗ[σ₁₂] M₂)
(e₂₃ : M₂ ≃ₛₗ[σ₂₃] M₃)
:
Stronger form of congrLinearEquiv.trans
applying to semilinear maps. Not a simp lemma as
σ₁₃
and σ₃₁
cannot be inferred from the LHS.
@[simp]
theorem
LinearMap.GeneralLinearGroup.congrLinearEquiv_refl
{R₁ : Type u_3}
{M₁ : Type u_6}
[Semiring R₁]
[AddCommMonoid M₁]
[Module R₁ M₁]
: