Documentation

Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat

The category of quadratic modules #

structure QuadraticModuleCat (R : Type u) [CommRing R] extends ModuleCat R :
Type (max u (v + 1))

The category of quadratic modules; modules with an associated quadratic form

@[reducible, inline]

The object in the category of quadratic R-modules associated to a quadratic R-module.

Equations
structure QuadraticModuleCat.Hom {R : Type u} [CommRing R] (V W : QuadraticModuleCat R) :

A type alias for QuadraticForm.LinearIsometry to avoid confusion between the categorical and algebraic spellings of composition.

theorem QuadraticModuleCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {V W : QuadraticModuleCat R} {x y : V.Hom W} (toIsometry' : x.toIsometry' = y.toIsometry') :
x = y
Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]

Turn a morphism in QuadraticModuleCat back into a Isometry.

Equations
@[reducible, inline]
abbrev QuadraticModuleCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] {Q₁ : QuadraticForm R X} {Q₂ : QuadraticForm R Y} (f : Q₁ →qᵢ Q₂) :
of Q₁ of Q₂

Typecheck a QuadraticForm.Isometry as a morphism in Module R.

Equations
theorem QuadraticModuleCat.hom_ext {R : Type u} [CommRing R] {M N : QuadraticModuleCat R} (f g : M N) (h : Hom.toIsometry f = Hom.toIsometry g) :
f = g
Equations
  • One or more equations did not get rendered due to their size.
def QuadraticModuleCat.ofIso {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] {Q₁ : QuadraticForm R X} {Q₂ : QuadraticForm R Y} (e : QuadraticMap.IsometryEquiv Q₁ Q₂) :
of Q₁ of Q₂

Build an isomorphism in the category QuadraticModuleCat R from a QuadraticForm.IsometryEquiv.

Equations
@[simp]
theorem QuadraticModuleCat.ofIso_inv {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] {Q₁ : QuadraticForm R X} {Q₂ : QuadraticForm R Y} (e : QuadraticMap.IsometryEquiv Q₁ Q₂) :
@[simp]
theorem QuadraticModuleCat.ofIso_hom {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] {Q₁ : QuadraticForm R X} {Q₂ : QuadraticForm R Y} (e : QuadraticMap.IsometryEquiv Q₁ Q₂) :
@[simp]
theorem QuadraticModuleCat.ofIso_symm {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] {Q₁ : QuadraticForm R X} {Q₂ : QuadraticForm R Y} (e : QuadraticMap.IsometryEquiv Q₁ Q₂) :
@[simp]
theorem QuadraticModuleCat.ofIso_trans {R : Type u} [CommRing R] {X Y Z : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [AddCommGroup Z] [Module R Z] {Q₁ : QuadraticForm R X} {Q₂ : QuadraticForm R Y} {Q₃ : QuadraticForm R Z} (e : QuadraticMap.IsometryEquiv Q₁ Q₂) (f : QuadraticMap.IsometryEquiv Q₂ Q₃) :

Build a QuadraticForm.IsometryEquiv from an isomorphism in the category QuadraticModuleCat R.

Equations
  • One or more equations did not get rendered due to their size.