Documentation

Mathlib.ModelTheory.Basic

Basics on First-Order Structures #

This file defines first-order languages and structures in the style of the Flypitch project, as well as several important maps between structures.

Main Definitions #

References #

For the Flypitch project:

Languages and Structures #

structure FirstOrder.Language :
Type (max (u + 1) (v + 1))

A first-order language consists of a type of functions of every natural-number arity and a type of relations of every natural-number arity.

  • Functions : Type u

    For every arity, a Type* of functions of that arity

  • Relations : Type v

    For every arity, a Type* of relations of that arity

@[reducible, inline]

A language is relational when it has no function symbols.

Equations
@[reducible, inline]

A language is algebraic when it has no relation symbols.

Equations

The empty language has no symbols.

Equations

The sum of two languages consists of the disjoint union of their symbols.

Equations
@[reducible, inline]

The type of constants in a given language.

Equations
@[reducible, inline]
abbrev FirstOrder.Language.Symbols (L : Language) :
Type (max u v)

The type of symbols in a given language.

Equations

The cardinality of a language is the cardinality of its type of symbols.

Equations
@[deprecated FirstOrder.Language.card_empty (since := "2025-02-05")]

Alias of FirstOrder.Language.card_empty.

instance FirstOrder.Language.instDecidableEqFunctions {f : Type u_1} {R : Type u_2} (n : ) [DecidableEq (f n)] :
DecidableEq ({ Functions := f, Relations := R }.Functions n)

Passes a DecidableEq instance on a type of function symbols through the Language constructor. Despite the fact that this is proven by inferInstance, it is still needed - see the examples in ModelTheory/Ring/Basic.

Equations
instance FirstOrder.Language.instDecidableEqRelations {f : Type u_1} {R : Type u_2} (n : ) [DecidableEq (R n)] :
DecidableEq ({ Functions := f, Relations := R }.Relations n)

Passes a DecidableEq instance on a type of relation symbols through the Language constructor. Despite the fact that this is proven by inferInstance, it is still needed - see the examples in ModelTheory/Ring/Basic.

Equations
class FirstOrder.Language.Structure (L : Language) (M : Type w) :
Type (max (max u v) w)

A first-order structure on a type M consists of interpretations of all the symbols in a given language. Each function of arity n is interpreted as a function sending tuples of length n (modeled as (Fin n → M)) to M, and a relation of arity n is a function from tuples of length n to Prop.

  • funMap {n : } : L.Functions n(Fin nM)M

    Interpretation of the function symbols

  • RelMap {n : } : L.Relations n(Fin nM)Prop

    Interpretation of the relation symbols

Instances
    theorem FirstOrder.Language.Structure.ext {L : Language} {M : Type w} {x y : L.Structure M} (funMap : @funMap L M x = @funMap L M y) (RelMap : @RelMap L M x = @RelMap L M y) :
    x = y

    Used for defining FirstOrder.Language.Theory.ModelType.instInhabited.

    Equations

    Maps #

    structure FirstOrder.Language.Hom (L : Language) (M : Type w) (N : Type w') [L.Structure M] [L.Structure N] :
    Type (max w w')

    A homomorphism between first-order structures is a function that commutes with the interpretations of functions and maps tuples in one structure where a given relation is true to tuples in the second structure where that relation is still true.

    A homomorphism between first-order structures is a function that commutes with the interpretations of functions and maps tuples in one structure where a given relation is true to tuples in the second structure where that relation is still true.

    Equations
    • One or more equations did not get rendered due to their size.
    structure FirstOrder.Language.Embedding (L : Language) (M : Type w) (N : Type w') [L.Structure M] [L.Structure N] extends M N :
    Type (max w w')

    An embedding of first-order structures is an embedding that commutes with the interpretations of functions and relations.

    An embedding of first-order structures is an embedding that commutes with the interpretations of functions and relations.

    Equations
    • One or more equations did not get rendered due to their size.
    structure FirstOrder.Language.Equiv (L : Language) (M : Type w) (N : Type w') [L.Structure M] [L.Structure N] extends M N :
    Type (max w w')

    An equivalence of first-order structures is an equivalence that commutes with the interpretations of functions and relations.

    An equivalence of first-order structures is an equivalence that commutes with the interpretations of functions and relations.

    Equations
    • One or more equations did not get rendered due to their size.

    Interpretation of a constant symbol

    Equations
    theorem FirstOrder.Language.funMap_eq_coe_constants {L : Language} {M : Type w} [L.Structure M] {c : L.Constants} {x : Fin 0M} :

    Given a language with a nonempty type of constants, any structure will be nonempty. This cannot be a global instance, because L becomes a metavariable.

    class FirstOrder.Language.HomClass (L : outParam Language) (F : Type u_3) (M : outParam (Type u_4)) (N : outParam (Type u_5)) [FunLike F M N] [Structure L M] [Structure L N] :

    HomClass L F M N states that F is a type of L-homomorphisms. You should extend this typeclass when you extend FirstOrder.Language.Hom.

    Instances
      class FirstOrder.Language.StrongHomClass (L : outParam Language) (F : Type u_3) (M : outParam (Type u_4)) (N : outParam (Type u_5)) [FunLike F M N] [Structure L M] [Structure L N] :

      StrongHomClass L F M N states that F is a type of L-homomorphisms which preserve relations in both directions.

      Instances
        @[instance 100]
        instance FirstOrder.Language.StrongHomClass.homClass {L : Language} {M : Type w} {N : Type w'} {F : Type u_3} [L.Structure M] [L.Structure N] [FunLike F M N] [L.StrongHomClass F M N] :
        L.HomClass F M N
        theorem FirstOrder.Language.HomClass.strongHomClassOfIsAlgebraic {L : Language} [L.IsAlgebraic] {F : Type u_3} {M : Type u_4} {N : Type u_5} [L.Structure M] [L.Structure N] [FunLike F M N] [L.HomClass F M N] :

        Not an instance to avoid a loop.

        theorem FirstOrder.Language.HomClass.map_constants {L : Language} {F : Type u_3} {M : Type u_4} {N : Type u_5} [L.Structure M] [L.Structure N] [FunLike F M N] [L.HomClass F M N] (φ : F) (c : L.Constants) :
        φ c = c
        instance FirstOrder.Language.Hom.instFunLike {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
        FunLike (L.Hom M N) M N
        Equations
        instance FirstOrder.Language.Hom.homClass {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
        L.HomClass (L.Hom M N) M N
        @[simp]
        theorem FirstOrder.Language.Hom.toFun_eq_coe {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.Hom M N} :
        f.toFun = f
        theorem FirstOrder.Language.Hom.ext {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] f g : L.Hom M N (h : ∀ (x : M), f x = g x) :
        f = g
        @[simp]
        theorem FirstOrder.Language.Hom.map_fun {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (φ : L.Hom M N) {n : } (f : L.Functions n) (x : Fin nM) :
        φ (Structure.funMap f x) = Structure.funMap f (φ x)
        @[simp]
        theorem FirstOrder.Language.Hom.map_constants {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (φ : L.Hom M N) (c : L.Constants) :
        φ c = c
        @[simp]
        theorem FirstOrder.Language.Hom.map_rel {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (φ : L.Hom M N) {n : } (r : L.Relations n) (x : Fin nM) :
        def FirstOrder.Language.Hom.id (L : Language) (M : Type w) [L.Structure M] :
        L.Hom M M

        The identity map from a structure to itself.

        Equations
        @[simp]
        theorem FirstOrder.Language.Hom.id_apply {L : Language} {M : Type w} [L.Structure M] (x : M) :
        (id L M) x = x
        def FirstOrder.Language.Hom.comp {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (hnp : L.Hom N P) (hmn : L.Hom M N) :
        L.Hom M P

        Composition of first-order homomorphisms.

        Equations
        • hnp.comp hmn = { toFun := hnp hmn, map_fun' := , map_rel' := }
        @[simp]
        theorem FirstOrder.Language.Hom.comp_apply {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (g : L.Hom N P) (f : L.Hom M N) (x : M) :
        (g.comp f) x = g (f x)
        theorem FirstOrder.Language.Hom.comp_assoc {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] {Q : Type u_2} [L.Structure Q] (f : L.Hom M N) (g : L.Hom N P) (h : L.Hom P Q) :
        (h.comp g).comp f = h.comp (g.comp f)

        Composition of first-order homomorphisms is associative.

        @[simp]
        theorem FirstOrder.Language.Hom.comp_id {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Hom M N) :
        f.comp (id L M) = f
        @[simp]
        theorem FirstOrder.Language.Hom.id_comp {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Hom M N) :
        (id L N).comp f = f
        def FirstOrder.Language.HomClass.toHom {L : Language} {F : Type u_3} {M : Type u_4} {N : Type u_5} [L.Structure M] [L.Structure N] [FunLike F M N] [L.HomClass F M N] :
        FL.Hom M N

        Any element of a HomClass can be realized as a first_order homomorphism.

        Equations
        @[simp]
        theorem FirstOrder.Language.HomClass.toHom_toFun {L : Language} {F : Type u_3} {M : Type u_4} {N : Type u_5} [L.Structure M] [L.Structure N] [FunLike F M N] [L.HomClass F M N] (a✝ : F) (a : M) :
        (toHom a✝) a = a✝ a
        instance FirstOrder.Language.Embedding.funLike {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
        FunLike (L.Embedding M N) M N
        Equations
        @[simp]
        theorem FirstOrder.Language.Embedding.map_fun {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (φ : L.Embedding M N) {n : } (f : L.Functions n) (x : Fin nM) :
        φ (Structure.funMap f x) = Structure.funMap f (φ x)
        @[simp]
        theorem FirstOrder.Language.Embedding.map_constants {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (φ : L.Embedding M N) (c : L.Constants) :
        φ c = c
        @[simp]
        theorem FirstOrder.Language.Embedding.map_rel {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (φ : L.Embedding M N) {n : } (r : L.Relations n) (x : Fin nM) :
        def FirstOrder.Language.Embedding.toHom {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
        L.Embedding M NL.Hom M N

        A first-order embedding is also a first-order homomorphism.

        Equations
        @[simp]
        theorem FirstOrder.Language.Embedding.coe_toHom {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.Embedding M N} :
        f.toHom = f
        theorem FirstOrder.Language.Embedding.ext {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] f g : L.Embedding M N (h : ∀ (x : M), f x = g x) :
        f = g
        @[simp]
        theorem FirstOrder.Language.Embedding.toHom_inj {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.Embedding M N} :
        f.toHom = g.toHom f = g
        def FirstOrder.Language.Embedding.ofInjective {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] [L.IsAlgebraic] {f : L.Hom M N} (hf : Function.Injective f) :
        L.Embedding M N

        In an algebraic language, any injective homomorphism is an embedding.

        Equations
        @[simp]
        theorem FirstOrder.Language.Embedding.ofInjective_toFun {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] [L.IsAlgebraic] {f : L.Hom M N} (hf : Function.Injective f) (a✝ : M) :
        (ofInjective hf) a✝ = f a✝
        @[simp]
        theorem FirstOrder.Language.Embedding.coeFn_ofInjective {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] [L.IsAlgebraic] {f : L.Hom M N} (hf : Function.Injective f) :
        (ofInjective hf) = f
        @[simp]
        theorem FirstOrder.Language.Embedding.ofInjective_toHom {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] [L.IsAlgebraic] {f : L.Hom M N} (hf : Function.Injective f) :

        The identity embedding from a structure to itself.

        Equations
        @[simp]
        theorem FirstOrder.Language.Embedding.refl_apply {L : Language} {M : Type w} [L.Structure M] (x : M) :
        (refl L M) x = x
        def FirstOrder.Language.Embedding.comp {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (hnp : L.Embedding N P) (hmn : L.Embedding M N) :
        L.Embedding M P

        Composition of first-order embeddings.

        Equations
        • hnp.comp hmn = { toFun := hnp hmn, inj' := , map_fun' := , map_rel' := }
        @[simp]
        theorem FirstOrder.Language.Embedding.comp_apply {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (g : L.Embedding N P) (f : L.Embedding M N) (x : M) :
        (g.comp f) x = g (f x)
        theorem FirstOrder.Language.Embedding.comp_assoc {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] {Q : Type u_2} [L.Structure Q] (f : L.Embedding M N) (g : L.Embedding N P) (h : L.Embedding P Q) :
        (h.comp g).comp f = h.comp (g.comp f)

        Composition of first-order embeddings is associative.

        @[simp]
        theorem FirstOrder.Language.Embedding.comp_inj {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (h : L.Embedding N P) (f g : L.Embedding M N) :
        h.comp f = h.comp g f = g
        @[simp]
        theorem FirstOrder.Language.Embedding.toHom_comp_inj {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (h : L.Embedding N P) (f g : L.Hom M N) :
        h.toHom.comp f = h.toHom.comp g f = g
        @[simp]
        theorem FirstOrder.Language.Embedding.comp_toHom {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (hnp : L.Embedding N P) (hmn : L.Embedding M N) :
        (hnp.comp hmn).toHom = hnp.toHom.comp hmn.toHom
        @[simp]
        theorem FirstOrder.Language.Embedding.comp_refl {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Embedding M N) :
        f.comp (refl L M) = f
        @[simp]
        theorem FirstOrder.Language.Embedding.refl_comp {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Embedding M N) :
        (refl L N).comp f = f
        def FirstOrder.Language.StrongHomClass.toEmbedding {L : Language} {F : Type u_3} {M : Type u_4} {N : Type u_5} [L.Structure M] [L.Structure N] [FunLike F M N] [EmbeddingLike F M N] [L.StrongHomClass F M N] :
        FL.Embedding M N

        Any element of an injective StrongHomClass can be realized as a first_order embedding.

        Equations
        @[simp]
        theorem FirstOrder.Language.StrongHomClass.toEmbedding_toFun {L : Language} {F : Type u_3} {M : Type u_4} {N : Type u_5} [L.Structure M] [L.Structure N] [FunLike F M N] [EmbeddingLike F M N] [L.StrongHomClass F M N] (a✝ : F) (a : M) :
        (toEmbedding a✝) a = a✝ a
        instance FirstOrder.Language.Equiv.instEquivLike {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
        EquivLike (L.Equiv M N) M N
        Equations
        def FirstOrder.Language.Equiv.symm {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) :
        L.Equiv N M

        The inverse of a first-order equivalence is a first-order equivalence.

        Equations
        • f.symm = { toEquiv := f.symm, map_fun' := , map_rel' := }
        @[simp]
        theorem FirstOrder.Language.Equiv.symm_symm {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) :
        f.symm.symm = f
        @[simp]
        theorem FirstOrder.Language.Equiv.apply_symm_apply {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) (a : N) :
        f (f.symm a) = a
        @[simp]
        theorem FirstOrder.Language.Equiv.symm_apply_apply {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) (a : M) :
        f.symm (f a) = a
        @[simp]
        theorem FirstOrder.Language.Equiv.map_fun {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (φ : L.Equiv M N) {n : } (f : L.Functions n) (x : Fin nM) :
        φ (Structure.funMap f x) = Structure.funMap f (φ x)
        @[simp]
        theorem FirstOrder.Language.Equiv.map_constants {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (φ : L.Equiv M N) (c : L.Constants) :
        φ c = c
        @[simp]
        theorem FirstOrder.Language.Equiv.map_rel {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (φ : L.Equiv M N) {n : } (r : L.Relations n) (x : Fin nM) :
        def FirstOrder.Language.Equiv.toEmbedding {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
        L.Equiv M NL.Embedding M N

        A first-order equivalence is also a first-order embedding.

        Equations
        def FirstOrder.Language.Equiv.toHom {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
        L.Equiv M NL.Hom M N

        A first-order equivalence is also a first-order homomorphism.

        Equations
        @[simp]
        theorem FirstOrder.Language.Equiv.toEmbedding_toHom {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) :
        @[simp]
        theorem FirstOrder.Language.Equiv.coe_toHom {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.Equiv M N} :
        f.toHom = f
        @[simp]
        theorem FirstOrder.Language.Equiv.coe_toEmbedding {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) :
        f.toEmbedding = f
        theorem FirstOrder.Language.Equiv.ext {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] f g : L.Equiv M N (h : ∀ (x : M), f x = g x) :
        f = g
        theorem FirstOrder.Language.Equiv.bijective {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) :
        theorem FirstOrder.Language.Equiv.injective {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) :
        theorem FirstOrder.Language.Equiv.surjective {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) :

        The identity equivalence from a structure to itself.

        Equations
        @[simp]
        theorem FirstOrder.Language.Equiv.refl_apply {L : Language} {M : Type w} [L.Structure M] (x : M) :
        (refl L M) x = x
        def FirstOrder.Language.Equiv.comp {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (hnp : L.Equiv N P) (hmn : L.Equiv M N) :
        L.Equiv M P

        Composition of first-order equivalences.

        Equations
        • hnp.comp hmn = { toFun := hnp hmn, invFun := (hmn.trans hnp.toEquiv).invFun, left_inv := , right_inv := , map_fun' := , map_rel' := }
        @[simp]
        theorem FirstOrder.Language.Equiv.comp_apply {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (g : L.Equiv N P) (f : L.Equiv M N) (x : M) :
        (g.comp f) x = g (f x)
        @[simp]
        theorem FirstOrder.Language.Equiv.comp_refl {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (g : L.Equiv M N) :
        g.comp (refl L M) = g
        @[simp]
        theorem FirstOrder.Language.Equiv.refl_comp {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (g : L.Equiv M N) :
        (refl L N).comp g = g
        @[simp]
        theorem FirstOrder.Language.Equiv.comp_assoc {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] {Q : Type u_2} [L.Structure Q] (f : L.Equiv M N) (g : L.Equiv N P) (h : L.Equiv P Q) :
        (h.comp g).comp f = h.comp (g.comp f)

        Composition of first-order homomorphisms is associative.

        theorem FirstOrder.Language.Equiv.injective_comp {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (h : L.Equiv N P) :
        @[simp]
        theorem FirstOrder.Language.Equiv.comp_toHom {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (hnp : L.Equiv N P) (hmn : L.Equiv M N) :
        (hnp.comp hmn).toHom = hnp.toHom.comp hmn.toHom
        @[simp]
        theorem FirstOrder.Language.Equiv.comp_toEmbedding {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (hnp : L.Equiv N P) (hmn : L.Equiv M N) :
        @[simp]
        theorem FirstOrder.Language.Equiv.self_comp_symm {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) :
        f.comp f.symm = refl L N
        @[simp]
        theorem FirstOrder.Language.Equiv.symm_comp_self {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) :
        f.symm.comp f = refl L M
        @[simp]
        theorem FirstOrder.Language.Equiv.symm_comp_self_toHom {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) :
        @[simp]
        theorem FirstOrder.Language.Equiv.self_comp_symm_toHom {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Equiv M N) :
        @[simp]
        theorem FirstOrder.Language.Equiv.comp_symm {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (f : L.Equiv M N) (g : L.Equiv N P) :
        (g.comp f).symm = f.symm.comp g.symm
        theorem FirstOrder.Language.Equiv.comp_right_injective {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (h : L.Equiv M N) :
        Function.Injective fun (f : L.Equiv N P) => f.comp h
        @[simp]
        theorem FirstOrder.Language.Equiv.comp_right_inj {L : Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {P : Type u_1} [L.Structure P] (h : L.Equiv M N) (f g : L.Equiv N P) :
        f.comp h = g.comp h f = g
        def FirstOrder.Language.StrongHomClass.toEquiv {L : Language} {F : Type u_3} {M : Type u_4} {N : Type u_5} [L.Structure M] [L.Structure N] [EquivLike F M N] [L.StrongHomClass F M N] :
        FL.Equiv M N

        Any element of a bijective StrongHomClass can be realized as a first_order isomorphism.

        Equations
        @[simp]
        theorem FirstOrder.Language.StrongHomClass.toEquiv_invFun {L : Language} {F : Type u_3} {M : Type u_4} {N : Type u_5} [L.Structure M] [L.Structure N] [EquivLike F M N] [L.StrongHomClass F M N] (a✝ : F) (a✝¹ : N) :
        (toEquiv a✝).invFun a✝¹ = EquivLike.inv a✝ a✝¹
        @[simp]
        theorem FirstOrder.Language.StrongHomClass.toEquiv_toFun {L : Language} {F : Type u_3} {M : Type u_4} {N : Type u_5} [L.Structure M] [L.Structure N] [EquivLike F M N] [L.StrongHomClass F M N] (a✝ : F) (a : M) :
        (toEquiv a✝) a = a✝ a
        instance FirstOrder.Language.sumStructure (L₁ : Language) (L₂ : Language) (S : Type u_3) [L₁.Structure S] [L₂.Structure S] :
        (L₁.sum L₂).Structure S
        Equations
        • One or more equations did not get rendered due to their size.
        @[simp]
        theorem FirstOrder.Language.funMap_sumInl {L₁ : Language} {L₂ : Language} {S : Type u_3} [L₁.Structure S] [L₂.Structure S] {n : } (f : L₁.Functions n) :
        @[simp]
        theorem FirstOrder.Language.funMap_sumInr {L₁ : Language} {L₂ : Language} {S : Type u_3} [L₁.Structure S] [L₂.Structure S] {n : } (f : L₂.Functions n) :
        @[simp]
        theorem FirstOrder.Language.relMap_sumInl {L₁ : Language} {L₂ : Language} {S : Type u_3} [L₁.Structure S] [L₂.Structure S] {n : } (R : L₁.Relations n) :
        @[simp]
        theorem FirstOrder.Language.relMap_sumInr {L₁ : Language} {L₂ : Language} {S : Type u_3} [L₁.Structure S] [L₂.Structure S] {n : } (R : L₂.Relations n) :
        @[deprecated FirstOrder.Language.funMap_sumInl (since := "2025-02-21")]
        theorem FirstOrder.Language.funMap_sum_inl {L₁ : Language} {L₂ : Language} {S : Type u_3} [L₁.Structure S] [L₂.Structure S] {n : } (f : L₁.Functions n) :

        Alias of FirstOrder.Language.funMap_sumInl.

        @[deprecated FirstOrder.Language.funMap_sumInr (since := "2025-02-21")]
        theorem FirstOrder.Language.funMap_sum_inr {L₁ : Language} {L₂ : Language} {S : Type u_3} [L₁.Structure S] [L₂.Structure S] {n : } (f : L₂.Functions n) :

        Alias of FirstOrder.Language.funMap_sumInr.

        @[deprecated FirstOrder.Language.relMap_sumInl (since := "2025-02-21")]
        theorem FirstOrder.Language.relMap_sum_inl {L₁ : Language} {L₂ : Language} {S : Type u_3} [L₁.Structure S] [L₂.Structure S] {n : } (R : L₁.Relations n) :

        Alias of FirstOrder.Language.relMap_sumInl.

        @[deprecated FirstOrder.Language.relMap_sumInr (since := "2025-02-21")]
        theorem FirstOrder.Language.relMap_sum_inr {L₁ : Language} {L₂ : Language} {S : Type u_3} [L₁.Structure S] [L₂.Structure S] {n : } (R : L₂.Relations n) :

        Alias of FirstOrder.Language.relMap_sumInr.

        Any type can be made uniquely into a structure over the empty language.

        Equations
        • One or more equations did not get rendered due to their size.

        Makes a Language.empty.Hom out of any function. This is only needed because there is no instance of FunLike (M → N) M N, and thus no instance of Language.empty.HomClass M N.

        Equations
        @[simp]
        theorem Function.emptyHom_toFun {M : Type w} {N : Type w'} [FirstOrder.Language.empty.Structure M] [FirstOrder.Language.empty.Structure N] (f : MN) (a✝ : M) :
        (emptyHom f) a✝ = f a✝
        def Equiv.inducedStructure {L : FirstOrder.Language} {M : Type u_1} {N : Type u_2} [L.Structure M] (e : M N) :

        A structure induced by a bijection.

        Equations
        • One or more equations did not get rendered due to their size.
        @[simp]
        theorem Equiv.inducedStructure_funMap {L : FirstOrder.Language} {M : Type u_1} {N : Type u_2} [L.Structure M] (e : M N) {n✝ : } (f : L.Functions n✝) (x : Fin n✝N) :
        @[simp]
        theorem Equiv.inducedStructure_RelMap {L : FirstOrder.Language} {M : Type u_1} {N : Type u_2} [L.Structure M] (e : M N) {n✝ : } (r : L.Relations n✝) (x : Fin n✝N) :
        def Equiv.inducedStructureEquiv {L : FirstOrder.Language} {M : Type u_1} {N : Type u_2} [L.Structure M] (e : M N) :
        L.Equiv M N

        A bijection as a first-order isomorphism with the induced structure on the codomain.

        Equations
        @[simp]
        theorem Equiv.toFun_inducedStructureEquiv {L : FirstOrder.Language} {M : Type u_1} {N : Type u_2} [L.Structure M] (e : M N) :
        @[simp]