Documentation

Mathlib.Order.Antisymmetrization

Turning a preorder into a partial order #

This file allows to make a preorder into a partial order by quotienting out the elements a, b such that a ≤ b and b ≤ a.

Antisymmetrization is a functor from Preorder to PartialOrder. See Preorder_to_PartialOrder.

Main declarations #

def AntisymmRel {α : Type u_1} (r : ααProp) (a b : α) :

The antisymmetrization relation AntisymmRel r is defined so that AntisymmRel r a b ↔ r a b ∧ r b a.

Equations
Instances For
    theorem antisymmRel_swap {α : Type u_1} (r : ααProp) :
    theorem antisymmRel_swap_apply {α : Type u_1} {a b : α} (r : ααProp) :
    @[simp]
    theorem AntisymmRel.refl {α : Type u_1} (r : ααProp) [IsRefl α r] (a : α) :
    theorem AntisymmRel.rfl {α : Type u_1} {r : ααProp} [IsRefl α r] {a : α} :
    instance instIsReflAntisymmRel {α : Type u_1} (r : ααProp) [IsRefl α r] :
    theorem AntisymmRel.of_eq {α : Type u_1} {r : ααProp} [IsRefl α r] {a b : α} (h : a = b) :
    theorem Eq.antisymmRel {α : Type u_1} {r : ααProp} [IsRefl α r] {a b : α} (h : a = b) :

    Alias of AntisymmRel.of_eq.

    theorem AntisymmRel.symm {α : Type u_1} {a b : α} {r : ααProp} :
    AntisymmRel r a bAntisymmRel r b a
    instance instIsSymmAntisymmRel {α : Type u_1} {r : ααProp} :
    theorem antisymmRel_comm {α : Type u_1} {a b : α} {r : ααProp} :
    theorem AntisymmRel.trans {α : Type u_1} {a b c : α} {r : ααProp} [IsTrans α r] (hab : AntisymmRel r a b) (hbc : AntisymmRel r b c) :
    instance instIsTransAntisymmRel {α : Type u_1} {r : ααProp} [IsTrans α r] :
    instance AntisymmRel.decidableRel {α : Type u_1} {r : ααProp} [DecidableRel r] :
    Equations
    @[simp]
    theorem antisymmRel_iff_eq {α : Type u_1} {a b : α} {r : ααProp} [IsRefl α r] [IsAntisymm α r] :
    AntisymmRel r a b a = b
    theorem AntisymmRel.eq {α : Type u_1} {a b : α} {r : ααProp} [IsRefl α r] [IsAntisymm α r] :
    AntisymmRel r a ba = b

    Alias of the forward direction of antisymmRel_iff_eq.

    theorem Mathlib.Tactic.GCongr.AntisymmRel.left {α : Type u_3} {a b : α} {r : ααProp} (h : AntisymmRel r a b) :
    r a b
    theorem Mathlib.Tactic.GCongr.AntisymmRel.right {α : Type u_3} {a b : α} {r : ααProp} (h : AntisymmRel r a b) :
    r b a

    See if the term is AntisymmRel r a b and the goal is r a b.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      See if the term is AntisymmRel r a b and the goal is r b a.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem AntisymmRel.le {α : Type u_1} {a b : α} [LE α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
        a b
        theorem AntisymmRel.ge {α : Type u_1} {a b : α} [LE α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
        b a
        def AntisymmRel.setoid (α : Type u_1) (r : ααProp) [IsPreorder α r] :

        The antisymmetrization relation as an equivalence relation.

        Equations
        Instances For
          @[simp]
          theorem AntisymmRel.setoid_r (α : Type u_1) (r : ααProp) [IsPreorder α r] (a b : α) :
          (setoid α r) a b = AntisymmRel r a b
          def Antisymmetrization (α : Type u_1) (r : ααProp) [IsPreorder α r] :
          Type u_1

          The partial order derived from a preorder by making pairwise comparable elements equal. This is the quotient by fun a b => a ≤ b ∧ b ≤ a.

          Equations
          Instances For
            def toAntisymmetrization {α : Type u_1} (r : ααProp) [IsPreorder α r] :
            αAntisymmetrization α r

            Turn an element into its antisymmetrization.

            Equations
            Instances For
              noncomputable def ofAntisymmetrization {α : Type u_1} (r : ααProp) [IsPreorder α r] :
              Antisymmetrization α rα

              Get a representative from the antisymmetrization.

              Equations
              Instances For
                theorem Antisymmetrization.ind {α : Type u_1} (r : ααProp) [IsPreorder α r] {p : Antisymmetrization α rProp} :
                (∀ (a : α), p (toAntisymmetrization r a))∀ (q : Antisymmetrization α r), p q
                theorem Antisymmetrization.induction_on {α : Type u_1} (r : ααProp) [IsPreorder α r] {p : Antisymmetrization α rProp} (a : Antisymmetrization α r) (h : ∀ (a : α), p (toAntisymmetrization r a)) :
                p a
                @[simp]
                theorem le_iff_lt_or_antisymmRel {α : Type u_1} {a b : α} [Preorder α] :
                a b a < b AntisymmRel (fun (x1 x2 : α) => x1 x2) a b
                theorem le_of_le_of_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                a c
                theorem le_of_antisymmRel_of_le {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : b c) :
                a c
                theorem lt_of_lt_of_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : a < b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                a < c
                theorem lt_of_antisymmRel_of_lt {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : b < c) :
                a < c
                theorem LE.le.lt_or_antisymmRel {α : Type u_1} {a b : α} [Preorder α] :
                a ba < b AntisymmRel (fun (x1 x2 : α) => x1 x2) a b

                Alias of the forward direction of le_iff_lt_or_antisymmRel.

                theorem LE.le.trans_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                a c

                Alias of le_of_le_of_antisymmRel.

                theorem AntisymmRel.trans_le {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : b c) :
                a c

                Alias of le_of_antisymmRel_of_le.

                theorem LT.lt.trans_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : a < b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                a < c

                Alias of lt_of_lt_of_antisymmRel.

                theorem AntisymmRel.trans_lt {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : b < c) :
                a < c

                Alias of lt_of_antisymmRel_of_lt.

                instance instTransLeAntisymmRel {α : Type u_1} [Preorder α] :
                Trans (fun (x1 x2 : α) => x1 x2) (AntisymmRel fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2
                Equations
                instance instTransAntisymmRelLe {α : Type u_1} [Preorder α] :
                Trans (AntisymmRel fun (x1 x2 : α) => x1 x2) (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2
                Equations
                instance instTransLtAntisymmRelLe {α : Type u_1} [Preorder α] :
                Trans (fun (x1 x2 : α) => x1 < x2) (AntisymmRel fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 < x2
                Equations
                instance instTransAntisymmRelLeLt {α : Type u_1} [Preorder α] :
                Trans (AntisymmRel fun (x1 x2 : α) => x1 x2) (fun (x1 x2 : α) => x1 < x2) fun (x1 x2 : α) => x1 < x2
                Equations
                theorem AntisymmRel.le_congr {α : Type u_1} {a b c d : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) c d) :
                a c b d
                theorem AntisymmRel.le_congr_left {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                a c b c
                theorem AntisymmRel.le_congr_right {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                a b a c
                theorem AntisymmRel.lt_congr {α : Type u_1} {a b c d : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) c d) :
                a < c b < d
                theorem AntisymmRel.lt_congr_left {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                a < c b < c
                theorem AntisymmRel.lt_congr_right {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                a < b a < c
                theorem AntisymmRel.antisymmRel_congr {α : Type u_1} {a b c d : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) c d) :
                AntisymmRel (fun (x1 x2 : α) => x1 x2) a c AntisymmRel (fun (x1 x2 : α) => x1 x2) b d
                theorem AntisymmRel.antisymmRel_congr_left {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
                AntisymmRel (fun (x1 x2 : α) => x1 x2) a c AntisymmRel (fun (x1 x2 : α) => x1 x2) b c
                theorem AntisymmRel.antisymmRel_congr_right {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
                AntisymmRel (fun (x1 x2 : α) => x1 x2) a b AntisymmRel (fun (x1 x2 : α) => x1 x2) a c
                theorem AntisymmRel.image {α : Type u_1} {β : Type u_2} {a b : α} [Preorder α] [Preorder β] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) {f : αβ} (hf : Monotone f) :
                AntisymmRel (fun (x1 x2 : β) => x1 x2) (f a) (f b)
                instance instPartialOrderAntisymmetrization {α : Type u_1} [Preorder α] :
                PartialOrder (Antisymmetrization α fun (x1 x2 : α) => x1 x2)
                Equations
                • One or more equations did not get rendered due to their size.
                theorem antisymmetrization_fibration {α : Type u_1} [Preorder α] :
                Relation.Fibration (fun (x1 x2 : α) => x1 < x2) (fun (x1 x2 : Antisymmetrization α fun (x1 x2 : α) => x1 x2) => x1 < x2) (toAntisymmetrization fun (x1 x2 : α) => x1 x2)
                theorem acc_antisymmetrization_iff {α : Type u_1} {a : α} [Preorder α] :
                Acc (fun (x1 x2 : Antisymmetrization α fun (x1 x2 : α) => x1 x2) => x1 < x2) (toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a) Acc (fun (x1 x2 : α) => x1 < x2) a
                instance instWellFoundedLTAntisymmetrizationLe {α : Type u_1} [Preorder α] [WellFoundedLT α] :
                WellFoundedLT (Antisymmetrization α fun (x1 x2 : α) => x1 x2)
                instance instWellFoundedGTAntisymmetrizationLe {α : Type u_1} [Preorder α] [WellFoundedGT α] :
                WellFoundedGT (Antisymmetrization α fun (x1 x2 : α) => x1 x2)
                instance instLinearOrderAntisymmetrizationLeOfDecidableLEOfDecidableLTOfIsTotal {α : Type u_1} [Preorder α] [DecidableLE α] [DecidableLT α] [IsTotal α fun (x1 x2 : α) => x1 x2] :
                LinearOrder (Antisymmetrization α fun (x1 x2 : α) => x1 x2)
                Equations
                • One or more equations did not get rendered due to their size.
                @[simp]
                theorem toAntisymmetrization_le_toAntisymmetrization_iff {α : Type u_1} {a b : α} [Preorder α] :
                toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a toAntisymmetrization (fun (x1 x2 : α) => x1 x2) b a b
                @[simp]
                theorem toAntisymmetrization_lt_toAntisymmetrization_iff {α : Type u_1} {a b : α} [Preorder α] :
                toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a < toAntisymmetrization (fun (x1 x2 : α) => x1 x2) b a < b
                @[simp]
                theorem ofAntisymmetrization_le_ofAntisymmetrization_iff {α : Type u_1} [Preorder α] {a b : Antisymmetrization α fun (x1 x2 : α) => x1 x2} :
                ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) a ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) b a b
                @[simp]
                theorem ofAntisymmetrization_lt_ofAntisymmetrization_iff {α : Type u_1} [Preorder α] {a b : Antisymmetrization α fun (x1 x2 : α) => x1 x2} :
                ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) a < ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) b a < b
                theorem toAntisymmetrization_mono {α : Type u_1} [Preorder α] :
                Monotone (toAntisymmetrization fun (x1 x2 : α) => x1 x2)
                def OrderHom.antisymmetrization {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) :
                (Antisymmetrization α fun (x1 x2 : α) => x1 x2) →o Antisymmetrization β fun (x1 x2 : β) => x1 x2

                Turns an order homomorphism from α to β into one from Antisymmetrization α to Antisymmetrization β. Antisymmetrization is actually a functor. See Preorder_to_PartialOrder.

                Equations
                Instances For
                  @[simp]
                  theorem OrderHom.coe_antisymmetrization {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) :
                  theorem OrderHom.antisymmetrization_apply {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) (a : Antisymmetrization α fun (x1 x2 : α) => x1 x2) :
                  @[simp]
                  theorem OrderHom.antisymmetrization_apply_mk {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) (a : α) :
                  f.antisymmetrization (toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a) = toAntisymmetrization (fun (x1 x2 : β) => x1 x2) (f a)
                  noncomputable def OrderEmbedding.ofAntisymmetrization (α : Type u_1) [Preorder α] :
                  (Antisymmetrization α fun (x1 x2 : α) => x1 x2) ↪o α

                  ofAntisymmetrization as an order embedding.

                  Equations
                  Instances For
                    @[simp]
                    theorem OrderEmbedding.ofAntisymmetrization_apply (α : Type u_1) [Preorder α] (a✝ : Antisymmetrization α fun (x1 x2 : α) => x1 x2) :
                    (ofAntisymmetrization α) a✝ = _root_.ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) a✝
                    def OrderIso.dualAntisymmetrization (α : Type u_1) [Preorder α] :
                    (Antisymmetrization α fun (x1 x2 : α) => x1 x2)ᵒᵈ ≃o Antisymmetrization αᵒᵈ fun (x1 x2 : αᵒᵈ) => x1 x2

                    Antisymmetrization and orderDual commute.

                    Equations
                    Instances For
                      @[simp]
                      theorem OrderIso.dualAntisymmetrization_apply (α : Type u_1) [Preorder α] (a : α) :
                      (dualAntisymmetrization α) (OrderDual.toDual (toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a)) = toAntisymmetrization (fun (x1 x2 : αᵒᵈ) => x1 x2) (OrderDual.toDual a)
                      @[simp]
                      theorem OrderIso.dualAntisymmetrization_symm_apply (α : Type u_1) [Preorder α] (a : α) :
                      (dualAntisymmetrization α).symm (toAntisymmetrization (fun (x1 x2 : αᵒᵈ) => x1 x2) (OrderDual.toDual a)) = OrderDual.toDual (toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a)
                      def Antisymmetrization.prodEquiv (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] :
                      (Antisymmetrization (α × β) fun (x1 x2 : α × β) => x1 x2) ≃o (Antisymmetrization α fun (x1 x2 : α) => x1 x2) × Antisymmetrization β fun (x1 x2 : β) => x1 x2

                      The antisymmetrization of a product preorder is order isomorphic to the product of antisymmetrizations.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem Antisymmetrization.prodEquiv_apply_mk (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] {ab : α × β} :
                        (prodEquiv α β) ab = (ab.1, ab.2)
                        @[simp]
                        theorem Antisymmetrization.prodEquiv_symm_apply_mk (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] {a : α} {b : β} :
                        instance Prod.wellFoundedLT (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] [WellFoundedLT α] [WellFoundedLT β] :
                        instance Prod.wellFoundedGT (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] [WellFoundedGT α] [WellFoundedGT β] :