Exponential distributions over ℝ #
Define the Exponential measure over the reals.
Main definitions #
exponentialPDFReal
: the functionr x ↦ r * exp (-(r * x)
for0 ≤ x
or0
else, which is the probability density function of a exponential distribution with rater
(whenhr : 0 < r
).exponentialPDF
:ℝ≥0∞
-valued pdf,exponentialPDF r = ENNReal.ofReal (exponentialPDFReal r)
.expMeasure
: an exponential measure onℝ
, parametrized by its rater
.exponentialCDFReal
: the CDF given by the definition of CDF inProbabilityTheory.CDF
applied to the exponential measure.
Main results #
exponentialCDFReal_eq
: Proof that theexponentialCDFReal
given by the definition equals the known function given asr x ↦ 1 - exp (- (r * x))
for0 ≤ x
or0
else.
The pdf of the exponential distribution depending on its rate
Equations
Instances For
The pdf of the exponential distribution, as a function valued in ℝ≥0∞
Equations
Instances For
The exponential pdf is measurable.
The exponential pdf is positive for all positive reals
The exponential pdf is nonnegative
@[simp]
The pdf of the exponential distribution integrates to 1
Measure defined by the exponential distribution
Equations
Instances For
CDF of the exponential distribution
Equations
Instances For
theorem
ProbabilityTheory.exp_neg_integrableOn_Ioc
{b x : ℝ}
(hb : 0 < b)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => Real.exp (-(b * x))) (Set.Ioc 0 x) MeasureTheory.volume
A negative exponential function is integrable on intervals in R≥0