Documentation

Mathlib.Probability.Kernel.Composition.Comp

Composition of kernels #

We define the composition η ∘ₖ κ of kernels κ : Kernel α β and η : Kernel β γ, which is a kernel from α to γ.

Main definitions #

Main statements #

Notations #

noncomputable def ProbabilityTheory.Kernel.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (η : Kernel β γ) (κ : Kernel α β) :
Kernel α γ

Composition of two kernels.

Equations
  • η.comp κ = { toFun := fun (a : α) => (κ a).bind η, measurable' := }
Instances For

    Composition of two kernels.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem ProbabilityTheory.Kernel.comp_apply {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (η : Kernel β γ) (κ : Kernel α β) (a : α) :
      (η.comp κ) a = (κ a).bind η
      theorem ProbabilityTheory.Kernel.comp_apply' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (η : Kernel β γ) (κ : Kernel α β) (a : α) {s : Set γ} (hs : MeasurableSet s) :
      ((η.comp κ) a) s = ∫⁻ (b : β), (η b) s κ a
      theorem ProbabilityTheory.Kernel.comp_apply_univ_le {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : Kernel α β) (η : Kernel β γ) [IsFiniteKernel η] (a : α) :
      @[simp]
      theorem ProbabilityTheory.Kernel.zero_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : Kernel α β) :
      comp 0 κ = 0
      @[simp]
      theorem ProbabilityTheory.Kernel.comp_zero {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : Kernel β γ) :
      κ.comp 0 = 0

      ae filter of the composition #

      theorem ProbabilityTheory.Kernel.ae_lt_top_of_comp_ne_top {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {κ : Kernel α β} {η : Kernel β γ} {s : Set γ} (a : α) (hs : ((η.comp κ) a) s ) :
      ∀ᵐ (b : β) κ a, (η b) s <
      theorem ProbabilityTheory.Kernel.comp_null {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {κ : Kernel α β} {η : Kernel β γ} {s : Set γ} (a : α) (hs : MeasurableSet s) :
      ((η.comp κ) a) s = 0 (fun (y : β) => (η y) s) =ᵐ[κ a] 0
      theorem ProbabilityTheory.Kernel.ae_null_of_comp_null {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {κ : Kernel α β} {η : Kernel β γ} {a : α} {s : Set γ} (h : ((η.comp κ) a) s = 0) :
      (fun (x : β) => (η x) s) =ᵐ[κ a] 0
      theorem ProbabilityTheory.Kernel.ae_ae_of_ae_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {κ : Kernel α β} {η : Kernel β γ} {a : α} {p : γProp} (h : ∀ᵐ (z : γ) (η.comp κ) a, p z) :
      ∀ᵐ (y : β) κ a, ∀ᵐ (z : γ) η y, p z
      theorem ProbabilityTheory.Kernel.ae_comp_of_ae_ae {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {κ : Kernel α β} {η : Kernel β γ} {a : α} {p : γProp} (hp : MeasurableSet {z : γ | p z}) (h : ∀ᵐ (y : β) κ a, ∀ᵐ (z : γ) η y, p z) :
      ∀ᵐ (z : γ) (η.comp κ) a, p z
      theorem ProbabilityTheory.Kernel.ae_comp_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {κ : Kernel α β} {η : Kernel β γ} {a : α} {p : γProp} (hp : MeasurableSet {z : γ | p z}) :
      (∀ᵐ (z : γ) (η.comp κ) a, p z) ∀ᵐ (y : β) κ a, ∀ᵐ (z : γ) η y, p z
      theorem ProbabilityTheory.Kernel.comp_restrict {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {κ : Kernel α β} {η : Kernel β γ} {s : Set γ} (hs : MeasurableSet s) :
      (η.restrict hs).comp κ = (η.comp κ).restrict hs
      theorem ProbabilityTheory.Kernel.lintegral_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (η : Kernel β γ) (κ : Kernel α β) (a : α) {g : γENNReal} (hg : Measurable g) :
      ∫⁻ (c : γ), g c (η.comp κ) a = ∫⁻ (b : β), ∫⁻ (c : γ), g c η b κ a
      theorem ProbabilityTheory.Kernel.comp_assoc {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {δ : Type u_4} {mδ : MeasurableSpace δ} (ξ : Kernel γ δ) (η : Kernel β γ) (κ : Kernel α β) :
      (ξ.comp η).comp κ = ξ.comp (η.comp κ)

      Composition of kernels is associative.

      @[simp]
      theorem ProbabilityTheory.Kernel.comp_discard {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (κ : Kernel α β) [IsMarkovKernel κ] :
      (discard β).comp κ = discard α
      @[simp]
      theorem ProbabilityTheory.Kernel.swap_copy {α : Type u_1} {mα : MeasurableSpace α} :
      (swap α α).comp (copy α) = copy α
      theorem ProbabilityTheory.Kernel.const_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (μ : MeasureTheory.Measure γ) (κ : Kernel α β) :
      ((const β μ).comp κ) = fun (a : α) => (κ a) Set.univ μ
      @[simp]
      theorem ProbabilityTheory.Kernel.const_comp' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (μ : MeasureTheory.Measure γ) (κ : Kernel α β) [IsMarkovKernel κ] :
      (const β μ).comp κ = const α μ
      theorem ProbabilityTheory.Kernel.comp_add_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (μ κ : Kernel α β) (η : Kernel β γ) :
      η.comp (μ + κ) = η.comp μ + η.comp κ
      theorem ProbabilityTheory.Kernel.comp_add_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (μ : Kernel α β) (κ η : Kernel β γ) :
      (κ + η).comp μ = κ.comp μ + η.comp μ
      theorem ProbabilityTheory.Kernel.comp_sum_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {ι : Type u_4} [Countable ι] (κ : ιKernel α β) (η : Kernel β γ) :
      η.comp (Kernel.sum κ) = Kernel.sum fun (i : ι) => η.comp (κ i)
      theorem ProbabilityTheory.Kernel.comp_sum_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {ι : Type u_4} [Countable ι] (κ : Kernel α β) (η : ιKernel β γ) :
      (Kernel.sum η).comp κ = Kernel.sum fun (i : ι) => (η i).comp κ
      instance ProbabilityTheory.Kernel.IsMarkovKernel.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (η : Kernel β γ) [IsMarkovKernel η] (κ : Kernel α β) [IsMarkovKernel κ] :
      instance ProbabilityTheory.Kernel.IsZeroOrMarkovKernel.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : Kernel α β) [IsZeroOrMarkovKernel κ] (η : Kernel β γ) [IsZeroOrMarkovKernel η] :
      instance ProbabilityTheory.Kernel.IsFiniteKernel.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (η : Kernel β γ) [IsFiniteKernel η] (κ : Kernel α β) [IsFiniteKernel κ] :
      instance ProbabilityTheory.Kernel.IsSFiniteKernel.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (η : Kernel β γ) [IsSFiniteKernel η] (κ : Kernel α β) [IsSFiniteKernel κ] :