Documentation

Mathlib.Probability.Moments.MGFAnalytic

The moment generating function is analytic #

The moment generating function mgf X μ of a random variable X with respect to a measure μ is analytic on the interior of integrableExpSet X μ, the interval on which it is defined.

Main results #

theorem ProbabilityTheory.hasDerivAt_integral_pow_mul_exp_real {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (ht : t interior (integrableExpSet X μ)) (n : ) :
HasDerivAt (fun (t : ) => (x : Ω), (fun (ω : Ω) => X ω ^ n * Real.exp (t * X ω)) x μ) ( (x : Ω), (fun (ω : Ω) => X ω ^ (n + 1) * Real.exp (t * X ω)) x μ) t

For t : ℝ with t ∈ interior (integrableExpSet X μ), the derivative of the function x ↦ μ[X ^ n * exp (x * X)] at t is μ[X ^ (n + 1) * exp (t * X)].

theorem ProbabilityTheory.hasDerivAt_mgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (h : t interior (integrableExpSet X μ)) :
HasDerivAt (mgf X μ) ( (x : Ω), (fun (ω : Ω) => X ω * Real.exp (t * X ω)) x μ) t

For t ∈ interior (integrableExpSet X μ), the derivative of mgf X μ at t is μ[X * exp (t * X)].

theorem ProbabilityTheory.hasDerivAt_iteratedDeriv_mgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (ht : t interior (integrableExpSet X μ)) (n : ) :
HasDerivAt (iteratedDeriv n (mgf X μ)) ( (x : Ω), (fun (ω : Ω) => X ω ^ (n + 1) * Real.exp (t * X ω)) x μ) t
theorem ProbabilityTheory.iteratedDeriv_mgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (ht : t interior (integrableExpSet X μ)) (n : ) :
iteratedDeriv n (mgf X μ) t = (x : Ω), (fun (ω : Ω) => X ω ^ n * Real.exp (t * X ω)) x μ

For t ∈ interior (integrableExpSet X μ), the n-th derivative of mgf X μ at t is μ[X ^ n * exp (t * X)].

theorem ProbabilityTheory.iteratedDeriv_mgf_zero {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} (h : 0 interior (integrableExpSet X μ)) (n : ) :
iteratedDeriv n (mgf X μ) 0 = (x : Ω), (X ^ n) x μ

The derivatives of the moment generating function at zero are the moments.

theorem ProbabilityTheory.deriv_mgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (h : t interior (integrableExpSet X μ)) :
deriv (mgf X μ) t = (x : Ω), (fun (ω : Ω) => X ω * Real.exp (t * X ω)) x μ

For t ∈ interior (integrableExpSet X μ), the derivative of mgf X μ at t is μ[X * exp (t * X)].

theorem ProbabilityTheory.deriv_mgf_zero {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} (h : 0 interior (integrableExpSet X μ)) :
deriv (mgf X μ) 0 = (x : Ω), X x μ
theorem ProbabilityTheory.analyticAt_mgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (ht : t interior (integrableExpSet X μ)) :
AnalyticAt (mgf X μ) t

The moment generating function is analytic at every t ∈ interior (integrableExpSet X μ).

theorem ProbabilityTheory.analyticOn_mgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} :

The moment generating function is analytic on the interior of the interval on which it is defined.

theorem ProbabilityTheory.hasFPowerSeriesAt_mgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {v : } (hv : v interior (integrableExpSet X μ)) :
HasFPowerSeriesAt (mgf X μ) (FormalMultilinearSeries.ofScalars fun (n : ) => ( (x : Ω), (fun (ω : Ω) => X ω ^ n * Real.exp (v * X ω)) x μ) / n.factorial) v
theorem ProbabilityTheory.differentiableAt_mgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (ht : t interior (integrableExpSet X μ)) :
theorem ProbabilityTheory.analyticAt_iteratedDeriv_mgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {v : } (hv : v interior (integrableExpSet X μ)) (n : ) :
theorem ProbabilityTheory.analyticAt_cgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {v : } (h : v interior (integrableExpSet X μ)) :
AnalyticAt (cgf X μ) v
theorem ProbabilityTheory.analyticOn_cgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} :

The cumulant generating function is analytic on the interior of the interval integrableExpSet X μ.

theorem ProbabilityTheory.deriv_cgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {v : } (h : v interior (integrableExpSet X μ)) :
deriv (cgf X μ) v = ( (x : Ω), (fun (ω : Ω) => X ω * Real.exp (v * X ω)) x μ) / mgf X μ v
theorem ProbabilityTheory.deriv_cgf_zero {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} (h : 0 interior (integrableExpSet X μ)) :
deriv (cgf X μ) 0 = ( (x : Ω), X x μ) / (μ Set.univ).toReal
theorem ProbabilityTheory.iteratedDeriv_two_cgf {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {v : } (h : v interior (integrableExpSet X μ)) :
iteratedDeriv 2 (cgf X μ) v = ( (x : Ω), (fun (ω : Ω) => X ω ^ 2 * Real.exp (v * X ω)) x μ) / mgf X μ v - deriv (cgf X μ) v ^ 2
theorem ProbabilityTheory.iteratedDeriv_two_cgf_eq_integral {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {v : } (h : v interior (integrableExpSet X μ)) :
iteratedDeriv 2 (cgf X μ) v = ( (x : Ω), (fun (ω : Ω) => (X ω - deriv (cgf X μ) v) ^ 2 * Real.exp (v * X ω)) x μ) / mgf X μ v