Documentation

Mathlib.RingTheory.HopfAlgebra.MonoidAlgebra

The Hopf algebra structure on group algebras #

Given a group G, a commutative semiring R and an R-Hopf algebra A, this file collects results about the R-Hopf algebra instance on A[G], building upon results in Mathlib/RingTheory/Bialgebra/MonoidAlgebra.lean about the bialgebra structure.

Main definitions #

noncomputable instance MonoidAlgebra.instHopfAlgebraStruct (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [HopfAlgebra R A] (G : Type u_3) [Group G] :
Equations
@[simp]
noncomputable instance MonoidAlgebra.instHopfAlgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {G : Type u_3} [Group G] :
Equations
noncomputable instance AddMonoidAlgebra.instHopfAlgebraStruct (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [HopfAlgebra R A] (G : Type u_3) [AddGroup G] :
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
noncomputable instance AddMonoidAlgebra.instHopfAlgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {G : Type u_3} [AddGroup G] :
Equations
@[simp]
theorem LaurentPolynomial.antipode_T {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] (n : ) :