Documentation

Mathlib.Topology.GDelta.Basic

sets #

In this file we define sets and prove their basic properties.

Main definitions #

Main results #

We prove that finite or countable intersections of Gδ sets are Gδ sets.

See Mathlib.Topology.GDelta.UniformSpace for the proof that continuity set of a function from a topological space to a uniform space is a Gδ set.

Tags #

Gδ set, residual set, nowhere dense set, meagre set

def IsGδ {X : Type u_1} [TopologicalSpace X] (s : Set X) :

A Gδ set is a countable intersection of open sets.

Equations
theorem IsOpen.isGδ {X : Type u_1} [TopologicalSpace X] {s : Set X} (h : IsOpen s) :

An open set is a Gδ set.

@[simp]
theorem IsGδ.empty {X : Type u_1} [TopologicalSpace X] :
@[simp]
theorem IsGδ.biInter_of_isOpen {X : Type u_1} {ι : Type u_3} [TopologicalSpace X] {I : Set ι} (hI : I.Countable) {f : ιSet X} (hf : iI, IsOpen (f i)) :
IsGδ (⋂ iI, f i)
theorem IsGδ.iInter_of_isOpen {X : Type u_1} {ι' : Sort u_4} [TopologicalSpace X] [Countable ι'] {f : ι'Set X} (hf : ∀ (i : ι'), IsOpen (f i)) :
IsGδ (⋂ (i : ι'), f i)
theorem isGδ_iff_eq_iInter_nat {X : Type u_1} [TopologicalSpace X] {s : Set X} :
IsGδ s ∃ (f : Set X), (∀ (n : ), IsOpen (f n)) s = ⋂ (n : ), f n
theorem IsGδ.eq_iInter_nat {X : Type u_1} [TopologicalSpace X] {s : Set X} :
IsGδ s∃ (f : Set X), (∀ (n : ), IsOpen (f n)) s = ⋂ (n : ), f n

Alias of the forward direction of isGδ_iff_eq_iInter_nat.

theorem IsGδ.iInter {X : Type u_1} {ι' : Sort u_4} [TopologicalSpace X] [Countable ι'] {s : ι'Set X} (hs : ∀ (i : ι'), IsGδ (s i)) :
IsGδ (⋂ (i : ι'), s i)

The intersection of an encodable family of Gδ sets is a Gδ set.

@[deprecated IsGδ.iInter (since := "2024.02.15")]
theorem isGδ_iInter {X : Type u_1} {ι' : Sort u_4} [TopologicalSpace X] [Countable ι'] {s : ι'Set X} (hs : ∀ (i : ι'), IsGδ (s i)) :
IsGδ (⋂ (i : ι'), s i)

Alias of IsGδ.iInter.


The intersection of an encodable family of Gδ sets is a Gδ set.

theorem IsGδ.biInter {X : Type u_1} {ι : Type u_3} [TopologicalSpace X] {s : Set ι} (hs : s.Countable) {t : (i : ι) → i sSet X} (ht : ∀ (i : ι) (hi : i s), IsGδ (t i hi)) :
IsGδ (⋂ (i : ι), ⋂ (h : i s), t i h)
theorem IsGδ.sInter {X : Type u_1} [TopologicalSpace X] {S : Set (Set X)} (h : sS, IsGδ s) (hS : S.Countable) :

A countable intersection of Gδ sets is a Gδ set.

theorem IsGδ.inter {X : Type u_1} [TopologicalSpace X] {s t : Set X} (hs : IsGδ s) (ht : IsGδ t) :
IsGδ (s t)
theorem IsGδ.union {X : Type u_1} [TopologicalSpace X] {s t : Set X} (hs : IsGδ s) (ht : IsGδ t) :
IsGδ (s t)

The union of two Gδ sets is a Gδ set.

theorem IsGδ.sUnion {X : Type u_1} [TopologicalSpace X] {S : Set (Set X)} (hS : S.Finite) (h : sS, IsGδ s) :

The union of finitely many Gδ sets is a Gδ set, Set.sUnion version.

theorem IsGδ.biUnion {X : Type u_1} {ι : Type u_3} [TopologicalSpace X] {s : Set ι} (hs : s.Finite) {f : ιSet X} (h : is, IsGδ (f i)) :
IsGδ (⋃ is, f i)

The union of finitely many Gδ sets is a Gδ set, bounded indexed union version.

theorem IsGδ.iUnion {X : Type u_1} {ι' : Sort u_4} [TopologicalSpace X] [Finite ι'] {f : ι'Set X} (h : ∀ (i : ι'), IsGδ (f i)) :
IsGδ (⋃ (i : ι'), f i)

The union of finitely many Gδ sets is a Gδ set, bounded indexed union version.

def residual (X : Type u_5) [TopologicalSpace X] :

A set s is called residual if it includes a countable intersection of dense open sets.

Equations
Instances For
theorem residual_of_dense_open {X : Type u_1} [TopologicalSpace X] {s : Set X} (ho : IsOpen s) (hd : Dense s) :

Dense open sets are residual.

theorem residual_of_dense_Gδ {X : Type u_1} [TopologicalSpace X] {s : Set X} (ho : IsGδ s) (hd : Dense s) :

Dense Gδ sets are residual.

theorem mem_residual_iff {X : Type u_1} [TopologicalSpace X] {s : Set X} :
s residual X ∃ (S : Set (Set X)), (∀ tS, IsOpen t) (∀ tS, Dense t) S.Countable ⋂₀ S s

A set is residual iff it includes a countable intersection of dense open sets.

def IsNowhereDense {X : Type u_5} [TopologicalSpace X] (s : Set X) :

A set is called nowhere dense iff its closure has empty interior.

Equations
@[simp]

The empty set is nowhere dense.

A closed set is nowhere dense iff its interior is empty.

If a set s is nowhere dense, so is its closure.

A nowhere dense set s is contained in a closed nowhere dense set (namely, its closure).

A set s is closed and nowhere dense iff its complement sᶜ is open and dense.

def IsMeagre {X : Type u_5} [TopologicalSpace X] (s : Set X) :

A set is called meagre iff its complement is a residual (or comeagre) set.

Equations

The empty set is meagre.

theorem IsMeagre.mono {X : Type u_5} [TopologicalSpace X] {s t : Set X} (hs : IsMeagre s) (hts : t s) :

Subsets of meagre sets are meagre.

theorem IsMeagre.inter {X : Type u_5} [TopologicalSpace X] {s t : Set X} (hs : IsMeagre s) :

An intersection with a meagre set is meagre.

theorem isMeagre_iUnion {X : Type u_5} [TopologicalSpace X] {s : Set X} (hs : ∀ (n : ), IsMeagre (s n)) :
IsMeagre (⋃ (n : ), s n)

A countable union of meagre sets is meagre.

theorem isMeagre_iff_countable_union_isNowhereDense {X : Type u_5} [TopologicalSpace X] {s : Set X} :
IsMeagre s ∃ (S : Set (Set X)), (∀ tS, IsNowhereDense t) S.Countable s ⋃₀ S

A set is meagre iff it is contained in a countable union of nowhere dense sets.