Products of pseudometric spaces and other constructions #
This file constructs the supremum distance on binary products of pseudometric spaces and provides instances for type synonyms.
@[reducible, inline]
abbrev
PseudoMetricSpace.induced
{α : Type u_3}
{β : Type u_4}
(f : α → β)
(m : PseudoMetricSpace β)
:
Pseudometric space structure pulled back by a function.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Topology.IsInducing.comapPseudoMetricSpace
{α : Type u_3}
{β : Type u_4}
[TopologicalSpace α]
[m : PseudoMetricSpace β]
{f : α → β}
(hf : IsInducing f)
:
Pull back a pseudometric space structure by an inducing map. This is a version of
PseudoMetricSpace.induced
useful in case if the domain already has a TopologicalSpace
structure.
Equations
Instances For
def
IsUniformInducing.comapPseudoMetricSpace
{α : Type u_3}
{β : Type u_4}
[UniformSpace α]
[m : PseudoMetricSpace β]
(f : α → β)
(h : IsUniformInducing f)
:
Pull back a pseudometric space structure by a uniform inducing map. This is a version of
PseudoMetricSpace.induced
useful in case if the domain already has a UniformSpace
structure.
Equations
Instances For
Equations
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Equations
instance
Prod.pseudoMetricSpaceMax
{α : Type u_1}
{β : Type u_2}
[PseudoMetricSpace α]
[PseudoMetricSpace β]
:
PseudoMetricSpace (α × β)
Equations
- Prod.pseudoMetricSpaceMax = (PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun (x y : α × β) => max (dist x.1 y.1) (dist x.2 y.2)) ⋯ ⋯).replaceBornology ⋯
theorem
Prod.dist_eq
{α : Type u_1}
{β : Type u_2}
[PseudoMetricSpace α]
[PseudoMetricSpace β]
{x y : α × β}
:
@[simp]
theorem
dist_prod_same_left
{α : Type u_1}
{β : Type u_2}
[PseudoMetricSpace α]
[PseudoMetricSpace β]
{x : α}
{y₁ y₂ : β}
:
@[simp]
theorem
dist_prod_same_right
{α : Type u_1}
{β : Type u_2}
[PseudoMetricSpace α]
[PseudoMetricSpace β]
{x₁ x₂ : α}
{y : β}
:
theorem
ball_prod_same
{α : Type u_1}
{β : Type u_2}
[PseudoMetricSpace α]
[PseudoMetricSpace β]
(x : α)
(y : β)
(r : ℝ)
:
theorem
closedBall_prod_same
{α : Type u_1}
{β : Type u_2}
[PseudoMetricSpace α]
[PseudoMetricSpace β]
(x : α)
(y : β)
(r : ℝ)
:
theorem
sphere_prod
{α : Type u_1}
{β : Type u_2}
[PseudoMetricSpace α]
[PseudoMetricSpace β]
(x : α × β)
(r : ℝ)
:
Metric.sphere x r = Metric.sphere x.1 r ×ˢ Metric.closedBall x.2 r ∪ Metric.closedBall x.1 r ×ˢ Metric.sphere x.2 r
theorem
uniformContinuous_dist
{α : Type u_1}
[PseudoMetricSpace α]
:
UniformContinuous fun (p : α × α) => dist p.1 p.2
theorem
UniformContinuous.dist
{α : Type u_1}
{β : Type u_2}
[PseudoMetricSpace α]
[UniformSpace β]
{f g : β → α}
(hf : UniformContinuous f)
(hg : UniformContinuous g)
:
UniformContinuous fun (b : β) => dist (f b) (g b)
theorem
continuous_dist
{α : Type u_1}
[PseudoMetricSpace α]
:
Continuous fun (p : α × α) => dist p.1 p.2
theorem
Continuous.dist
{α : Type u_1}
{β : Type u_2}
[PseudoMetricSpace α]
[TopologicalSpace β]
{f g : β → α}
(hf : Continuous f)
(hg : Continuous g)
:
Continuous fun (b : β) => dist (f b) (g b)
theorem
continuous_iff_continuous_dist
{α : Type u_1}
{β : Type u_2}
[PseudoMetricSpace α]
[TopologicalSpace β]
{f : β → α}
:
theorem
uniformContinuous_nndist
{α : Type u_1}
[PseudoMetricSpace α]
:
UniformContinuous fun (p : α × α) => nndist p.1 p.2
theorem
UniformContinuous.nndist
{α : Type u_1}
{β : Type u_2}
[PseudoMetricSpace α]
[UniformSpace β]
{f g : β → α}
(hf : UniformContinuous f)
(hg : UniformContinuous g)
:
UniformContinuous fun (b : β) => nndist (f b) (g b)
theorem
continuous_nndist
{α : Type u_1}
[PseudoMetricSpace α]
:
Continuous fun (p : α × α) => nndist p.1 p.2
theorem
Continuous.nndist
{α : Type u_1}
{β : Type u_2}
[PseudoMetricSpace α]
[TopologicalSpace β]
{f g : β → α}
(hf : Continuous f)
(hg : Continuous g)
:
Continuous fun (b : β) => nndist (f b) (g b)