Prespectral spaces #
In this file, we define prespectral spaces as spaces whose lattice of compact opens forms a basis.
A space is prespectral if the lattice of compact opens forms a basis.
Instances
theorem
PrespectralSpace.of_isTopologicalBasis
{X : Type u_1}
[TopologicalSpace X]
{B : Set (Set X)}
(basis : TopologicalSpace.IsTopologicalBasis B)
(isCompact_basis : ∀ U ∈ B, IsCompact U)
:
A space is prespectral if it has a basis consisting of compact opens.
theorem
PrespectralSpace.of_isTopologicalBasis'
{X : Type u_1}
[TopologicalSpace X]
{ι : Type u_3}
{b : ι → Set X}
(basis : TopologicalSpace.IsTopologicalBasis (Set.range b))
(isCompact_basis : ∀ (i : ι), IsCompact (b i))
:
A space is prespectral if it has a basis consisting of compact opens. This is the variant with an indexed basis instead.
@[instance 100]
instance
instPrespectralSpaceOfNoetherianSpace
{X : Type u_1}
[TopologicalSpace X]
[TopologicalSpace.NoetherianSpace X]
:
@[instance 100]
instance
instLocallyCompactSpaceOfPrespectralSpace
{X : Type u_1}
[TopologicalSpace X]
[PrespectralSpace X]
:
@[instance 100]
instance
instTotallySeparatedSpaceOfT2SpaceOfPrespectralSpace
{X : Type u_1}
[TopologicalSpace X]
[T2Space X]
[PrespectralSpace X]
:
theorem
PrespectralSpace.of_isOpenCover
{X : Type u_1}
[TopologicalSpace X]
{ι : Type u_3}
{U : ι → TopologicalSpace.Opens X}
(hU : TopologicalSpace.IsOpenCover U)
[∀ (i : ι), PrespectralSpace ↥(U i)]
:
theorem
PrespectralSpace.of_isInducing
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
[PrespectralSpace Y]
(f : X → Y)
(hf : Topology.IsInducing f)
(hf' : IsSpectralMap f)
:
theorem
PrespectralSpace.of_isClosedEmbedding
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
[PrespectralSpace Y]
(f : X → Y)
(hf : Topology.IsClosedEmbedding f)
:
In a prespectral space, the lattice of opens is determined by its lattice of compact opens.
Equations
- One or more equations did not get rendered due to their size.